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Here, we synthesized the large body of work on L.heterotomawith the aim to identify

The parasitoid Leptopilina heterotoméas been used as a model system for more than

ouu;vrom7;m1l;

;ul-mm; (bvv;u7 “ott|bom -nj7 New research avenues that could be of interest also for researchers studying other
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parasitoids and insects. We start our review with a description of typical L. heterotoma

belongs. We then continue discussing host suitability and immunity, foraging behav

iors, as well as fat accumulation and life histories. We subsequently shift our focus
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towards parasitoid-parasitoid interactions, including L.heterotomacoexistence within

the larger guild of Drosophilaparasitoids, chemical communication, as well as mat
ing and population structuring. We conclude our review by highlighting the assets of
L. heterotomaas a model system, including its intermediate life history syndromes, the
ease of observing and collecting natural hosts and wasps, as well as recent genomic
advances.

+ ) !
associative learning, endosymbiont, fitness, hostparasitoid community, lipids, sex
pheromones, virulence
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«JlJ $! & % 1862) was the first recorded name for the species. This was high
lighted by Nordlander (1980) in his comprehensive paper on the
The parasitoid Leptopilina heterotomas a wasp species that has long Leptopilinagenus, which was recently updated by Lue et al. 2016)
captivated biologists, with the earliest reports in the scientific lit - (including all other known synonyms of L.heterotomg Table 1). L. het
erature dating back to the 1950s (Figure 1; Jenni, 1951). During the erotomabelongs to the cynipoid wasps (superfamily: Cynipoidea), a
early days of scientific reporting, the species was often referred to as group that contains parasitoids (i.e., insects that develop and feed on
Pseudeucoila bocheiWeld, 1944), although L.heterotoma (Thomson,  another insect; Godfray, 1994), but also includes phytophagous gall
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inducers and inquilines (i.e., inhabiting the galls of others). The wide
diversity of feeding habits and life histories within the cynipoids
has led to several hypotheses regarding the early evolution of the
group. Ronquist (1995, 1999) hypothesized that the first cynipoids
were endoparasitoids of wood-, stem- or cone-boring insect larvae.
mu;l;nv|t70¢ t-bl;y|-tRP020) another scenario was pro
posed where inquilinism dominated throughout the early evolution
of cynipoids. This means that cynipoids would be derived from gall-
-vvolb-bnttbthmi;v]|ouvo|_;u <to];m;ppglomw|utl
tion, however, supported the previously suggested parasitoid-irst
hypothesis, where the common ancestor of the cynipoids was a pafr
asitoid. Irrespective of the exact lifestyle of the common ancestor,
several host shifts have occurred in the cynipoids, including the use

of dipteran hosts, as is the case for Lheterotoma
Leptopilina heterotomabelongs to the figitid family (Figitidae) and
e the eucoline subfamily (Eucolinae). While delimitations of the figitids
, have not been well established, the eucoilines are easily identifiable
by the possession of a clear synapomorphy: a scutellar plate with
a glandular pit (with unknown function) surmounting the mesotho -
& ! *J$_; -10;u %o-vr Leptopilina he@idama&midt racic scutellum (Figure 2; Fontal-Cazalla et al., 2002. Female anten
nae typically have 13 segments, while the male's antennae have 15
segments. Females also possess a clip at the end of their ovipositor,
which is a unique feature of most figitid wasps in the subfamilies

s »J"<mom «lvhasrdioma(from Lue et al., 2016) Figitinae and Eucolinae (see Section B 1 == b m ]3@0if)7Eucoline
Eucoila heterotoma -7ttybEuvm]zuob |0"SII7-m7_;007@uo%eomOt-1t¥
Ganaspis subnuda shiny. When a L.heterotomaindividual is viewed from the side and in
Ganaspis monilicornis the light, the body appears to be amber colored. In trying to boost
Erisphagia philippinensis other researchers to work on L. heterotomg and to ease the transfer
PseudeucoilgPseudeucoilpbochei of our scientific knowledge to the general public, we here propose

CothonaspisErisphagia philippinensis “amber wasp” as the common name for the species.

pseudeucoila bochei tt;tlotbmyy;m7or-u-vbpeiv¥touu-r =ddtvu”-;
and have a worldwide distribution, with exception of the poles

P T ==bmj]|| em2020). Leptopilina heterotomacan parasitize a
range of different host species, mainly in the Drosophilafly genus

Leptopilina monilicornis
Leptopilina philippinensis

Leptopili bnud . L . . .
eplopiiina subnuca (see Section?2), which it attacks when the host itself is developing

ST N et -v-t-u"-m;]] be-bBmvh7; ovimbmt<xvbmlEm7b "b71t-t

& ! ‘J -|;u-t "b;% o= |_;
thorax of Leptopilina heterotoma(a) and
Asobara tabida(b) with the scutellum
highlighted with a red line. Dorsal view
of the scutellum for L. heterotoma(c) and
A.tabida (d). The scutellar plate common
to eucolines is highlighted with the green
line, and the glandular pit with the blue
dot.
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can successfully survive into adulthood, even if multiple eggs are research to enthuse others to use this intriguing species as a
laid within the same host (i.e., L.heterotomais a solitary parasit model system.

oid). L. heterotomais a koinobiont, meaning that the host continues

feeding and growing while the wasp is developing. Interestingly,

L. heterotomainitially develops inside the host, but will migrate out “JlJ "$ "& S $+7 "$
od_;_ov|Pw7&tubm];d; ;torl;m|vi-];PeeS7-af;u ! " "$ 7 " 8 ('&
oviposition; Figure 3). Eucoilines are generally proevigenic (Ellers &

Jervis, 2004), and while L.heterotomais often referred to as being The amber wasp L.heterotomapredominantly parasitizes hosts in
pro-ovigenic (Carton et al.,1986; Haccou et al., 1991, Kimura, 2019), the Drosophilagenus, a very diverse and rich taxon, but also other

for most strains tested so far considerable egg numbers (sometimes  drosophilid species, such as Zaprionudlies (Table S1). L. hetero-
more than 300) are matured during adult life even if some eggs are toma does, however, not perform equally well on all these spe
[-|Tu; -] ;l;ul;ml; P(-<vv-7; ;| -t:7 2012). cies, due to differences in suitability, and speciesspecific immune
Drosophila parasitoids, including L. heterotomg have been reactions. Following oviposition of a wasp, a parasitized host can
reviewed in the past, most extensively in the book chapters indeed initiate an immune response in <*vSbmm-||;Ir||ohbtt
of Carton et al. (1986) and Fleury et al. 2009). More recently, the wasp's egg (Mortimer, 2013; Nappi, 1975; Poyet et al., 2013).
Wertheim (2022) has synthesized the work on hostparasitoid While ovipositing, the female will also inject venom fluids that

co-evolution in the context of virulence and immunity, including can suppress the host's immune response to increase the chances
L. heterotoma No review has yet been dedicated solely to the o=vtlil;vw=dtvb|db7torl;m|7-r|-|bommvZlotm]|;ud
wasp L. heterotoma that, together with several other species in adaptations in wasp virulence and host immunity leads to an

the Leptopilina genus, has been a staple of research in ecology evolutionary arms race that has been particularly well studied in
and evolution since the 1950s. With this review, we synthesize parasitoids (Wertheim, 2022). The interactions between L.hetero
key findings obtained with L. heterotomaas a model system, high toma, as well as Lboulardi and their hosts has greatly contributed
lighting the major contribution this species has made to research to our understanding of both insect immunity and venom evolu-

in ecology and evolution. We further suggest avenues for future tion in parasitoids. Several reviews have already discussed this
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& ! "J ;7;torl;m| o= Leptopilina heterbimmiine of the developmental stages of Drosophila melanogastégreen), and
L. heterotomadeveloping in D. melanogaster POtt;Q -| *"f : T10;uv bm7b1-|; |_; |bl; bm 7-<v P-7-r|;7 =uol "-m
1983). L.heterotomagoes through three larval stages (Carton et al., 1986 Jenni, 1951) that may differ depending on the temperature and 2
the host species used (Howe, 1967 Jenni, 1951Q: =;l-t; 1-m o"brovb| bm -tt t-u”-t _ov| bmv|-uv7 Of| vifu"b"-t bvg_b
second instar (Jenni, 1951 Q: =[}uK:“S 7 | _; ;l0u<o rovv;vv;v e+ v;]I;m|v Plouu;vrom7bm] |o |_; | _u;; | _ou-1®1
segments of the adult) that are clearly visible (Jenni, 195). The egg then hatches after ~ —K'—=S _7 %ob|_ =;l-t;v _-|1_bm] -rruoSbl3;t
" _t-];u |_-m I-t;v P bfv-1h;uv). The firkt;larval@¥dtar possesses caudal and thoracic appendages, and the larva uses its g
mandibles mainly to consume host hemolymph (Carton et al., 1986 Jenni, 1951). The first molt of the parasitoid takes place at approximately
the same time as host pupation (Carton et al., 198§, which may have a similar hormonal basis (Kopelman & Chabora, 19§4From the second
instar onwards, larvae use their mandibles to feed on the host's tissues (Cartonetal.,198® : | |_; |bl; o= |_; v;1om?7 lot|7 |_; r-
leaves the host's body and lies in between the pupa and the puparium feeding as an ectoparasitoid (Carton et al., 1986 The third larval
instar has a much rounder shape than the earlier instars and does not bear any appendages anymore. In the pggupal stage, the larva loses
its mandibles (Jenni,1951) and excretes pellets (meconia) that become visible at the posterior end of the host puparium (Carton et al., 1986
Jenni, 1951 Q: tr-|bom t-v|v -rruoSbl-|;t< —9 @nd theparasitoil bet@Ghes gradually pigmented (Jenni, 195B “-m tr_:m
& Thunnissen, 1983). The time of emergenceis ~+*S7-<v -=|;u o "brovb|bom A7 t<«v;vbuns7l~t;v: =]|;u ;l;ulbm] =uol
puparium, the adult L. heterotomaremains within the host's pupariumfor~‘“S_ 0;=ou; ;l;u]l;ml; P"-m tr_;m _ $). tTmmbvv;m
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in great detail (Mortimer, 2013; Nappi, 2010; Poirié et al., 2009,
2014; Wertheim, 2022; Yang et al., 2020; hence here we empha
size the work done on host suitability, host immunity and L. het-
erotomavirulence.

‘:¢J|J ov| vr;1b;v vtb|-Obtb|< -m7 r_;mootjod«-vrvm7 ov|w;| _tvu;v;mm7Fel|lb]_uot]_ot|

Drosophilaspecies can feed on a wide variety of substrates, including
fruits, flowers, tree sap, cacti and mushrooms, generally in a state
of decay (Markow & O'Grady, 2008). Drosophilamostly feed on the
microbial community associated with decaying substrates, in addi
tion to the substrate itself (Markow & O'Grady, 2008 ). Generalist
flies can oviposit and utilize a wide range of substrates (e.g.D. mela
nogaster D. simulans and D.immigrang, while specialists are typt
cally restricted to a single substrate (Carton et al., 1991 Markow
& O'Grady, 2008). For example, D.phalerata breeds in decaying
stinkhorn mushrooms (Driessen et al.,1990), while D. sechelliais
specialized on rotting morinda fruits that are toxic for other species
in the melanogaster group (Markow & O'Grady, 2005). L. hetero-
toma predominantly attacks drosophilid larvae in fermenting fruits
and sap fluxes, including D melanogaster (Carton et al., 1991Fleury
et al., 2004; Janssen, 1989 Rizki et al., 1990, D. simulans(Carton
et al., 1991; Janssen, 1989 Lynch et al., 20168 -r-f_ (; | 1990; Ris
et al., 2004) and D.suboscuraFleury et al., 2004; Janssen, 1989 Ris
etal., 2004), and to a lesser extentDrosophilaspecies breeding in de-
caying plant matter and fungi (e.g., Dphaleratg Janssen et al., 1988.
Leptopilina heterotomacan parasitize many different host spe
cies, but host suitability varies between species [able S1). In a study
by Janssen (1989), D. kuntzei was found to be the most suitable
host for L. heterotomawith 89% of L. heterotoma offspring surviv-
ing, while D.immigrans was least suitable (2% wasp survival). In this
study, D. immigrans was the only species (out of 9 species in total)
where more hosts than L. heterotomasurvived; hence D. immigrans
was the least suitable host. Drosophila immigrans indeed abundant
in Europe but is rarely parasitized (Kraaijeveld & Godfray, 2009. The
resistance of D. immigrans to parasitism was, however, suggested
to result from its thick cuticle rather than the more typical immune
response after parasitism (see below; Ideo et al., 2008 Kraaijeveld
& Godfray, 2009 8" -m tr_; m
development on D. melanogaster led to the highest percentage of

-mv v ;1982). In another study,

surviving offspring (47%) compared to D. suboscura(30%), as well
as D. immigrans andD. suzukii €1%). Highest survival percentages
(>85%) have been recorded on D. melanogasteb. hydei D. kuntzej
D. pseudoobscurgand D.suboscurgTable S1). Only very few L. hetero-
toma individuals survived when development occurred on Zaprionus
vittiger, D. suzukii and Dimmigrans (but see Hedlund et al., 199%and
no offspring survived when eggs were laid on D.ananassagD. biarmi
pes D. paraluteaand D. busckii Table S1). Survival on D. melanogas
ter, one of the preferred hosts of L. heterotoma(Carton et al., 1986,
1991; Fleury et al., 2004, 2009; Rouault, 1979) varies considerably
between 26% and 93%, a difference that can be explained by several
factors, including whether or not tested species shared an ecological

history (hosts and wasps were collected from the same area at the
same time), as well as genotype and geographic location (i.e., local
adaptation; Fleury et al., 2004).

Leptopilina heterotomaand its drosophilid hosts are polyvol
tine with multiple generations per year depending on habitat
type, resource availability, and temperature (Fleury et al., 2009.

most of the year, with the exception of winter (Fleury et al., 2009 ;
Wertheim et al., 2006). L. heterotomaabundance is highest during
summer, when higher temperatures lead to quicker development
0=00|]_ ;% -vrvm7q_;buov|v:i=b;¥]1t70< o7=u-m7
Hardy (1990), for example, showed that wasps were abundant
from June to September, with the highest number of individuals
caught in June (i.e., up to 23 individuals caught per day), and a gen
ju-t7;lu;-bmtl0o;yvuot]_offf@Per;u7-<Qm7t]tv|
P+;u7-<Q:lou;u;1l;mj|T70« motit| -t2017)in Switzerland
also found that wasp abundance decreased from spring to autumn.
Contrary to findings of Godfray and Hardy (1990) in the United
Kingdom and of Mazzetto et al. (2016) in Italy where almost no
individuals were found in September and October, respectively,
Fleury et al. 2004) still found a high abundance of L.heterotoma
bml|oO;bmu-m1l;v|t7en_;-01m7-n Brosophilaand
b|v-u-vb|ob@vom@t;ml:mM7<fu;vP u-m0DsQt; tuc
et al. 2004) suggested that the seasonal abundance of Lhetero
toma fluctuates in accordance with the abundance of the host
D. melanogaster Wasp abundance was found to depend on the
respective location, with L. heterotoma being most abundant in
Lyon where D. melanogaster also predominates. Remarkably low
numbers of L. heterotomahave also been recorded, for example in
[_s"ot|_;wb|vmu-mIP (-t;mim7<iu;vQ7vit|bmbt
steep decrease in D. melanogaster numbers (Fleury et al., 2009 n
Tunisia, L. heterotomaalso nearly disappears when competitive in
teractions are high, with D. simulansand D. buzzati being the main
hosts used (Carton et al., 1991Q :0 T m 7 - molt. heterotomathus
largely depends on geographic location, seasonality, local climatic
conditions, host demography, and competition.

4313 ov]| blltmb]|«

Encapsulation, a cellular immune response, is a process during which
specialized haemocytes aggregate around the parasitoid egg and ad-
here to its surface to form a capsule. In the melanogaster host sub-
group, these haemocytes are called lamellocytes, but within the larger
Drosophilidae, several taxa evolved distinct types of haemocytes (e.g.,
pseudopodocytes in the obscura subgroup; see Wertheim 2022 for a
review). Melanization, which is part of the humoral immune response,
entails the synthesis of melanin by lamellocytes that are encapsulat-
ing the parasitoid egg. This process occurs by the action of phenoloxi-
dases that originate from haemocytes (Kacsoh & Schlenke, 2012;
Nappi, 1975; Poyet et al., 2013). The combination of encapsulation by
haemocytes and melanization prevents the parasitoid egg from hatch-
ing, eventually killing it (Streams, 1968).
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Most Drosophilahosts fail to ignite an effective cellular (Nappi
& Streams, 1969; Streams, 1968 and humoral immune response
(Schlenke et al., 2007, and can thus not prevent the wasp em
bryo from developing (Poyet et al., 2013). Some host species, such
as D. suzukii and Dalgonquin however, do have a strong immune
response (Nappi, 1975 Poyet et al., 2013). Host resistance to par
asitism likely depends on the level of circulating haemocytes, with
more resistant species having higher haemocyte levels (Kacsoh
& Schlenke, 2012; Poyet et al., 2013). Resistant hosts, such as
D. euronotus and D.algonquin (Table S2), also possess immune
pathways associated with the secretion of antimicrobial proteins
and peptides, and other immune activities to inhibit egg/larval
development inside the host (Nappi, 1970, 1975 Q :m;S-1Irt;bv
the induced changes in levels of a cellsignaling molecule, nitric
oxide, following parasitism (Carton et al., 2009). Even in species
susceptible to parasitism by L.heterotoma or other parasitoids,
laboratory experiments and observations with natural popula-
tions have shown that parasitism resistance is under strong selee
tion and can increase in populations subjected to high parasitism
risks (see Wertheim, 2022 for a review). Indeed, despite the high
virulence of L. heterotoma some hosts can acquire increased re-
vbv|-mlyuot]_;;"ott|b@smo™;Jtm;wrfl-vt;1|bBnJ
in the D. melanogaster and Dsimulansclade, which is implicated
in the humoral response following parasitism by L. boulardi and
Asobara tabida(Keebaugh & Schlenke,2012). Increased parasit
ism resistance comes at cost, however, leading to tradeeffs, for
example with host larval competitive ability or larval survival

Ecology and Evolution IM|J” o= ‘=
=t e WILEY S

Immune responses can largely vary and depend both on biotic
factors, e.g., age, developmental stage (Sivdethy et al., 2005), and
abiotic factors, e.g., temperature (Nappi & Silvers, 1984 or ethanol
concentration (which is relevant because most Drosophilaspecies
develop on fermenting fruits; Lynch et al., 2017; Milan et al., 2012).

mbmlu;-BIFtm;u;vrom¥:imtv®;|ub]];ud?l-|;um-t&
fects, because Drosophildemales produce offspring with increased
lamellocyte production when oviposition occurs in the presence of
L. heterotoma P o (Etjut:2020). The Drosophilaendosymbiont
Spiroplasma(see Section4) also plays a major role in Drosophilae-
sistance againstL. heterotoma(Corbin et al., 20218 b]-u;7+4";-u
et al., 2021; Paredes et al., 2016 Xie et al., 2011, 2014 Q :< ru-0
ducing ribosome-inactivating proteins, Spiroplasmaseems to sup
press development of the juvenile parasitoid by deactivating wasp

ubOovolRPv-ttbm];yutl-nm2D17). The protection conferred
by Spiroplasmais temperature-dependent, however, and is absent
at 18°C (Corbin et al., 2021). The endosymbiont Wolbachiaalso in
creases Drosophilaresistance to parasitism byL. heterotomg albeit
weak (Xie et al., 2014).

‘:'J|J -u-vb|ob7 "butt;ml;

To overcome the host's immune response, some parasitoids in
ject venom during oviposition (Wertheim, 2022). In L.heterotomg
venom is known to affect host immunity leading to lysis of the host
lymph gland (the organ responsible for the production of lamello-

(Wertheim, 2022 Q:t]_of]L_;TtTm7;ut<bhhiim;u;vromyv;cytes), thereby preventing the production of haemocytes (Ramroop

mechanisms of resistant hosts are now well understood, it has re
mained largely unclear how the host is able to recognize parasitoid
eggs or larvae.

lomJu;vbv|-myyr;1b;tv1"-0PD. suzukij known as the
spotted wing Drosophilg are particularly efficient in killing L. hetero-
toma due to their high haemocyte load (Kacsoh & Schlenke, 2012
Poyet et al., 2013). D. suzukii mostly encapsulates developing wasps
at the larval stage, rather than the egg stage (i.e., between 48 and
e‘'SrovfJu-vb|bwiBo ont{ -1t:2018). D. suzukii originates
zuolvb-m7dv r;vjos;1omolblbtitcou|-mputbyvI-v
cherry, raspberry, blueberry, but also wild and ornamental plants
(Kenis et al., 2016 Lee et al., 2015 Poyet et al., 2015). The fact that
D. suzukii females lay their eggs on fresh fruits at a time very close to
harvest makes the use of classic insecticides a risk for human health.

et al., 2021Q (;mol =ttbXZem|-bm;u-tolrom;mpwm7ltt?7

ing kinases, esterases and hydrolases (Heavner et al., 20)3but
only few proteins have been accurately characterized up to now.

vi-u|<t]ttflov-IbRb7Qvo Ttd;-mblrou|-thglrom;m|

of L. heterotomavenom (Colinet et al., 2013). This protein is abun
dant in A. tabida venom, where it is suspected to be involved in host
paralysis during oviposition (Moreau et al., 2004). Haemocyte cap
sule formation around the parasitoid egg requires the glycosylation
o=ruo|;bmv: rovv;vv7y]tclotv<ct-fhomu|b;m7-<
thus be involved in encapsulation prevention (Colinet et al., 2013).
u;L;nv)|T7v_0%0;|7 -- m; % tic;viub@Oud|;bmuaPtalr_
gland apoptosistelated protein), was abundant in L. heterotoma
venom, promoting lysis of the host lymph gland (Huang et al., 2023).

L. heterotomavenom also contains several other proteins, such as

bolom|ulom|vu;|_Tv ru;=;u-0dr|bomlovVp-11ombElongation factor 1-alpha (EFia; Colinet et al., 2013), but its role in

et al.,, 2015). The efficient immune response of D. suzukii makes
L. heterotomaalmost unable to parasitize the larvae and is, therefore,
not an ideal biocontrol agent against D.suzukii (Chabert et al., 2012
Girod, Rossignaud, et al., 2018 Kacsoh & Schlenke, 2012 Knoll
et al., 2017; Poyet et al., 2013; Rossi Stacconi et al., 201}. Other
parasitoids (e.g., Trichopria drosophilaachycrepoideus vindemmige

including those from the native region of D. suzukii bmvb-P;:]:

Asobara japonicaGanaspis brasiliensisseem able to parasitize and
develop in this pest. These species can be investigated further for
their potential use as biocontrol agents (Daane et al., 2016.

inhibiting the host's immune response has not yet been elucidated.

In many parasitoid species, including Lheterotoma venom also
includes virus-like particles (Chiu et al.,2006; Colinet et al., 2013;
Coulette et al., 2017; Goecks et al., 2013 Morales et al., 2005;
Rizki et al., 1990Q (b u ftbohr,-u|bltuvruo7 t1bTam-11;v
sory gland, also called the long gland or venom gland (Ferrarese
et al., 2009; Rizki et al., 1990, and matured in a separate reservoir
within the female wasp's reproductive system (Chiu et al., 2006;
Morales et al., 2005Q (b u ftbhr-u|bltyv;-ulo0; 7;"°0b7
of nucleic acids, but contain various proteins, among which the
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most abundant protein, p40, is located on the surface and spikes
of mature particles (Chiu et al., 2006). The genes encoding virus-
like particles in L. heterotomaare embedded in the wasp genome
(Huang et al.,2021; Wey et al., 2020) and could have originated
from an ancestral virus (Di Giovanni et al., 2020. Other authors

have, however, argued for a nonwviral origin of virus-like parti-

cles and prefer the term mixed-strategy extracellular vesicles
(Heavner et al., 2013, Wey et al., 2020Q:t| _ot]_;;S-1i-
ture of the particles is still under debate, it is clear that virus-like

particles actively repress the host's immune response through
several mechanisms. The particles are able to inhibit the fune
tioning of lamellocyte adherence needed for encapsulation (Rizki
et al., 1990; Rizki & Rizki, 1991) and to disrupt the generation of

lamellocytes through lysing lymph glands (Chiu & Govind, 2002

Huang et al., 2021). Rizki and Rizki 1991) showed that virus-like

particles can enter lamellocytes and promote their lysis. The
particles are also able to reduce the number of sessile haeme
l1<|;vmo|_owb]dsm-1;ttol<«<|Pvm7;ytt2D16; Markus

et al., 2009). The guaranteed immune suppression through virus-
like particles allows L. heterotomato avoid encapsulation of its

developing larvae by host lamellocytes and are thus essential for
successful development.

"JJy "8 $ 7 ! 7
$ ( $ * $ 9
"$! $ "
To produce offspring, female parasitoids need to be able to accu
rately locate and parasitize hosts. Successful parasitism results from
a sequence of behaviors that include host habitat and patch loca
tion, host location within a patch, host acceptance, and host suit
ability (see Section 2 Godfray, 1994). Hosts are often distributed in
isolated patches in the environment. To deal with such fragmented
environments, parasitoid females need to divide their foraging ef
forts between different patches that can vary in host abundance
during their lifetime, but also between generations (e.g., seasonal
variation). Furthermore, in contrast to prey that become unavailable
for competing predators, parasitized hosts remain on a patch and
can subsequently be encountered by con or heterospecific female
competitors. Most parasitoid females can discriminate hosts already
parasitized by a conspecific, but discrimination of hosts parasitized

O¢<_;|l;u@d;1lb=Wb;Liwv|0o0;t;vdollombm-u-vb]|ob W7, _

etal., 20058"|ub;m@ b;lr|_"-mtr_;mM981l). When encourn-
tering a parasitized host, the female can either reject it and continue
to look for unparasitized hosts, or decide to lay an egg, a behavior
known as superparasitism. While superparasitism is restricted to
interactions with conspecifics, acceptance of a host parasitized by
a hetero-specific is referred to as multiparasitism. Superparasitism
and multiparasitism, therefore, represents a combination of extrinsic
(i.e., between females for access to hosts) and intrinsic competition
(i.e., among parasitoid larvae within a host). Superparasitism comes
at a risk though, because in solitary parasitoids only one adult can

emerge from a single host, and the second egg generally has the low
;v 1_-ml; o= vitu'b™-t P -hh;u ;| -t:7 1985
Since the 70's, the behavioral ecology of the amber wasp L. het
erotomahas been extensively studied, mostly in the context of op-
timal foraging theory. This theory states that the time allocated and
choices made while foraging for a resource are shaped by natural
selection, maximizing fitness (Charnov,1976). Research using L. het
erotomaas a model revealed the importance of associative learning
in patch and host selection in parasitoids. Due to its risky nature,
superparasitism was long thought to be detrimental to fitness, but
superparasitism can lead to fitness benefits for parasitoid females.
Studies with L. heterotomawere instrumental to increasing our un-
7;uv|-m7dan]bv_;mol;mdm-hh;l-t:1885). This section
aims to present the sequence of L. heterotoma female behaviors,
ranging from patch location to time allocated for foraging in a patch,
illuminating the contribution L. heterotomamade to understanding
how female parasitoid behaviors are shaped by natural selection.

"1eJ|J -]1_tol-|bom
Leptopilina heterotomafemales are attracted to the substrates on
which Drosophila=;;7-m® "brov®]-mm|;u;m -hh;ud788(; |
& van Opzeeland, 1985), particularly by the presence and quantity
of yeast and fermentation products (such as ethanol) resulting from
substrate decay (Dicke et al., 19848"-m -|; mO0 t u[] - t :1B83; van
;m|;u;.m-hh;LI78). These cues allow longdistance detection
of suitable host habitats (i.e., more than 1.5 m; Dicke et al., 1984,
even when actual hosts are not present on the patch (Dicke

etal, 19848"-m ;m|;u;m -hh;1978 Q:v _ov]| -0b|e[fouv

do not necessarily imply the presence of hosts, these cues are not
completely reliable. In addition to host habitat cues, L. heterotoma
females can also eavesdrop to detect and locate host patches based
on a host-emitted pheromone: the Drosophila aggregation phero-
mone (Lof et al., 2013; Wertheim et al., 2003 ; Wiskerke et al.,1993).

Jlu;]-|bom;uolomPe b bV-J11;m<t;|-|0;bm] ;rub
l-uc-1|bLolrotTm78]|;t]| -t1985) are deposited during ovi
position by several Drosophilaspecies to attract conspecific females
P -u];t|-t1985 Wertheim et al., 2006). The aggregation phero
mone is, therefore, a highly reliable cue indicating host presence for
L. heterotoma =;1-t; W -u|;;| -t:1B85; Wertheim et al., 2006).
Wertheim et al. (2003) showed that host aggregation pheromones
indeed help L. heterotoma in finding host patches on smaller and
t-ul;wur-|bvtl-t;Rb:5*¥S1Wobmmmmbdbul _-urwt;l
|b™;t<Qlu-1|blj@movi]]u;]-|bomuolombw tu]|_ravb
tively correlated with the concentration of yeast in the patch. Wasps
were attracted by the aggregation pheromone of D. melanogaster
%o _;m_;<;-viloml;m|uY%bvr«;-v|Fe"8Fo00l7;7btI17
but wasps were not attracted when the yeast was less concentrated
PJFe"SH@®;==;1|biptk-|;ovi-|1_;kheterotomafemales
thus use both habitat and host cues that in the natural environment
may be amplified when combined, increasing their signal reliability
for host finding.
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":'J]J ov| tol-]bom -m7 1_obl; % b]|_bnP~nitr| 1 m| -t:7984). These studies highlight that while

Once a female identifies and reaches a suitable patch, she starts to
search for hosts by walking over the surface of the food substrate
while rhythmically moving her antennae up and down and probing
| _;vtOv]|u%b|_;uo"brovbRoum |;mOTuy]-t:I083; van
Lenteren, 1976 8(;| _ -hh;1985). She determines the exact lo
cation of the host when her ovipositor touches or pierces the host
-hh;u®85). Interestingly,
the antennae seem of only little importance in these final steps of

cuticle (van Lenteren, 1976 8 (;| _

host location, because removal of the antennae does not prevent
females from finding larvae, at least under laboratory conditions
(van Lenteren, 1976). Once the female probes into a host, she can
either reject it (i.e., withdraw her ovipositor in <6 s) or proceed
|oo"browbt]-v|®Om[]%o;;mu-m7”"Sv811lot| -t:IP91; van
Lenteren, 1976 8(-u-t7 p-t 2D05). When a host's cuticle is pierced
by the ovipositor, the host larva tries to escape by rotating itself
and then moving away (van Lenteren et al., 1998. The ovipositor of
L. heterotomapossesses a physical structure resembling a “clip” (see
figure 1in van Lenteren et al., 1998) that allows the wasp to constrain
the larva and stop it from moving away while the female is injecting
her venom (van Lenteren,1976; van Lenteren et al., 1998). Following
oviposition, the female then preens her ovipositor and genitalia. For
a behavioral observer, this preening phase (in addition to oviposition
duration) represents the second line of evidence that a female sue

cessfully laid an egg (Haccou et al., 1991van Lenteren, 1976 8(-u-t7b

et al., 2005).

Once a female starts foraging in a patch, the presence of host
aggregation pheromone is no longer of importance (Wertheim
et al., 2003). To determine the presence and quantity of hosts
feeding within a patch, females use hostemitted kairomones
(Dicke et al., 19858 -m tr_;m| -t:10984 8(;| ;| -t:1993).
Kairomones are semiochemicals that trigger a response from an
other species that are only beneficial to the receiver, not the emit-
ter (i.e., the parasitoid and host larva, respectively; Grasswitz &
Jones, 2002 Q:||u-1|Homovh-buoloimbmm b|mhetero
toma, because inexperienced females probe the substrate faster
uo;m,; % d990y).
When investigating a patch with host kairomones, L.heterotoma

% :movh-buolomuyru;v;nP|(;|

females intensify their searching behavior by spending more time
on the area containing kairomones, and increasing the frequency
o=0"brovhbrjwa0bbm]-m;uo;";m_ (;|A984). Host kairo-
mones have not yet been identified chemically and could actually
be compounds that originate from the adult flies or the larvae,
such as cuticular hydrocarbons (CHCs) or feces (Dicke et al., 1985
“-mtr_;m]| -t:1B84). Host-produced kairomones are only de-
tectable within a patch. This was substantiated by experiments
performed on larger and smaller spatial scales: in a larger space
(climate room), L.heterotomadid not visit patches containing hand-
deposited fly larvae (without aggregation pheromones, but with
host kairomones; Dicke et al., 1984), while in a small space (5 cm
Petri dishes), females were more attracted to patches on which
larvae were feeding and crawling compared to hostfree patches

yeast odors and aggregation pheromone are of great importance
for detecting patches from a distance of several meters (Dicke
et al., 1984; Wertheim et al., 2003), host kairomones are critical
for host location on a small spatial scale.

":’J|J$_; uot; o= -vvolb-|b"; t;-umbm] b

r-11_ v;t;1|bom

Host patch selection by L. heterotomafemales is not only influenced
by chemical cues, but also by previous oviposition experiences, simi
lar to other parasitoid species (Meiners, 2003 Sobhy et al., 2019.
Through associative learning, females are more attracted to sub
strate odors on which they already had a successful oviposition expe
rience (Simons etal., 19928(;| ;| -t1998 8(;| _"1_ooml1883;
(;] _ "-mr&;;t-ml®85). L. heterotomafemales can use asse
ciative learning, for example, to differentiate between distinct sub-
strates, e.g., appleyeast versus mushroom (Papaj et al., 1994Papaj
_ (;]7990; Simons et al., 1992, and more similar substrates, e.g.,
r;-u;uvivrt;P(;]|-t1998). Females are not able, however, to
7b==;u;nm0[Hd % ;e @ b==;urmt -ub;|[®;y]]|-t1998).
vvolb-|Bumbmvlot-<v uotbmbm7bowvt-|1_;br_;
=b;tz:7obm$r;ubl;nbjm=ou;bip_; ;| _
(; | B990) showed that experienced females tended to find artificial

ut-m7-vw#f-m7

patches (containing appleyeast or mushroom substrates, without
hosts) faster and more often than naive females. Experienced fe
males were also more attracted to substrate types with which they
had a previous parasitism experience. Overall, females seem capable
of dynamically adjusting their search strategies in response to vari
ability in environmental stimuli, including the availability and distri-

Ot|bom o= _ov|v bm |_;bu ;m~buonml;m| P(;| ;| -t:

Increased efficiency in patch finding with experience seems
lou;vitjuot 1 _-mlgm;-ul-1|b"b(x|9-m7-r-fP392)
reused their protocol with apple- yeast and mushroom substrates
and tested how female experience affected searching behavior
in terms of walking speed and direction. Experienced females
changed direction less often and walked faster and straighter in the
direction of an odor that they had previously experienced. Female
preferences acquired through associative learning can, however,
be reversed by an unsuccessful parasitism experience (i.e., not
finding hosts) on an initially rewarding substrate, meaning that fe-
males are able to actively and rapidly adjust their search strategies

depending on experience (Papaj et al., 1994Q :vvolb-|thumbm]

also took place, but to a lesser extent, if the previous experience
was not successful parasitism, but simply contact with host kairo-
lom;W (; uo;m; % d990j). Strong kairomone cues for host
presence in the substrate thus also reinforces associative learning
P(;L uo;m; % d990). Learning through processes other than
association, like habituation or sensibilization to an environmen
|-t1t;70omot;-7|olo7b=bl-|bsmMht;ru;=;u;nPL;|
& Groenewold, 1990 Q:t|o];|_;tu700ou-|ou7=b;tBr;ub
ments suggest that associative learning using cues based on host
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substrate and presence is adaptive when females face variable en
vironments, playing an important role in microhabitat detection
and selection under natural conditions.

(Henneman et al., 1995 8 -mtr_;m|-t1887 8(bvv;umtr_;m7
etal., 1992 Q(b v v ; -t P992) showed that oviposition experience
on a patch containing only parasitized hosts leads to a higher rate of
superparasitism on a new patch that contains both parasitized and
tfmr-u-vb|bda®j¥=|;U‘S_)_;m=;l-t;wou-};itomL.7het

*J|J$_; uot; o= -vvolb-|b"; t;-umbm] doomma 7w whldy b Lir-u-violb|E(-u -t bt 2D0S), but the
vtll;vv -m7 vir;ur-u-vb|bvl 7;1bvbom@hdency to superparasitize increases when females investigate the

Learning is essential for the host location process, but also for
parasitism success. Naive Lheterotomafemales are less success
ful parasitizing hosts compared to experienced females, and a past
oviposition experience decreases oviposition duration (Samson-

ov_1b @&l n 1974).L. heterotomafemales are able to distinguish

tmr-u-vb|bdk{¥uol ov|v-u-vb|b0EIDmvr;1bP2bhk;u

et al., 1967, 1972; Hemerik et al., 2002 8( b v v 1895) or themselves
P (bv\987, 1995), also known as host discrimination. Females
further have the ability to estimate the number of eggs already
ru;v;nbjm _ovP -hh;{i-t:1972, 1990; Hemerik et al., 2002,
(bvvi1e9b Q:bhtov|o|_;u-u-vb|ob v ;] -t2D05),L. het
erotoma females seem unable to discriminate hosts that are para
sitized by other species, such asA. tabida, to avoid multiparasitism
P"|ub;-mJdb;lr]_ "-mtr_;ni981; see Section5 on competi-
tive interactions). Host discrimination allows a female to estimate
the quality of hosts within investigated patches, informing her about
current oviposition conditions that can also have an effect on fu-
|fupo™brovb|dromu|tTmbRbmtr_;m (bvv;1990). Early
studies stated that females need a first experience of parasitism
on already parasitized hosts to efficiently discriminate hosts (van
Lenteren, 1972 8" -m ;m|;u;m -hh;d975), but later work ar-
gued that hosts discrimination is innate in L.heterotoma(Henneman
etal, 19958"-m tr_;m| -t:IB87). In any case, host discrimina
tion is due to chemosensory sensilla located on the distal part of the
ovipositor (Ruschioni et al.,2015; van Lenteren, 1972; van Lenteren
et al., 2007). When these sensilla come into contact with D.mela
nogasterhemolymph, the connected gustatory neurons produce ac
tion potentials (van Lenteren et al., 2007). These neurophysiological
responses are dependent on the parasitism status of the host, as the
number of action potentials differs significantly between unpara-
sitized, singly, and doubly parasitized hosts (Ruschioni et al., 2016
When two parasitoid eggs are deposited in the same host,

| _;0t7;vdm7b " b%b-{t bm_ov];m;u-t¢du"b"Pv-hh;u

etal,19858 bfv-1h;uvhh;ag971), because it attacks and Kkills
b|volr;|b|dubfv-1h;u+hh;d¥71). In L. heterotomg sur

vival probability of the second larva is about 40% when laid shortly
after the first larva (i.e., within 3 h), while the second larva never

viu b%v ;t+r-b7=|;bou;|_-m“SP -hh;p-t1B858(bvv;u?

Luyckx, et al., 1992). Females mostly avoid superparasitism within

r-|1 vbltt|-m;o%wvhio|_;domvr;1bPbhi;-t:I085;
(bvv:19958 (bvv;u7<1h§J -t:79928 (bvv;07m tr_;m7
et al., 1992). Superparasitism rates further increase with the number
o=;l-t;wblft|-m;oftotk-]bmr-|1 P(bvyjut:¥——<Q:
When a female is exposed to conspecifics before an experiment, but
is subsequently left to forage on a patch alone, she also tends to su

r;ur-u-vb|b@&; lou; |_-m % _;m v_; bv h;p] -tom; P(

11;r|-mbFu;"botfwityu-vb|b@&yviw;;Ibm]twol;v-|
a huge fitness cost for the female, but under extrinsic competitive
pressure, superparasitism can be adaptive. When competition and
the number of parasitized hosts in a patch are high, having at least
some offspring that survive superparasitism is more advantageous
than leaving the patch at the risk of not finding any hosts later on.
Females are also more inclined to superparasitize hosts containing
one of their own eggs (up to 30% of eggs were selfsuperparasitized
bnibvv;1995) when they are in competition with a conspecific

=;l-t;brh_;v-1; r-]1 P (bv\903, 1995 8(bvv ;i -t:7——+Q:

Here, self-superparasitism could be adaptive, because it increases
the fitness of the female by decreasing the probability that the host

%o b@t vir,ur-u-vbpe@mad|_Jlwlr;|bn¥]l-t;P -mr_;m

_(bvv1e90 Qi< ]-| _;ublbmp=oul-pbobt;-ul_ bmblov|v7

as well as learning from past oviposition experiences, Lheterotoma
females can adaptively adjust their parasitism strategies in response
to their environment. Research on L. heterotoma has emphasized
that learning is of importance for parasitoids to choose patches that
are more likely to contain hosts and to adjust superparasitism deci
sions, with a positive impact on fitness. Recent studies have, how

;75U _0%m-|t;-umbmmyv; fwiol; -|- 1ovP7;utbfm

et al., 2021; Mery & Kawecki, 2005), potentially leading to tradeoffs
between learning capacities and life histories. Considering the ex
tensive knowledge on learning in L.heterotoma studying the cost of
learning and potential trade-offs can represent an interesting ave-
nue for future research using this species.

Y:HJIJ
r-v| ;Sr;ub;m1;v

=:1-t;1-mSrtobfit|brt-|1_;voa"brovb btarb mitb=;
time; hence the time she spends within a patch can have a major ef

| 3 %obm7@vviulh§7t1992 Q:ro|;m|bSirt-m-|b o rdecton fitness (Hubbard & Cook, 1978). For example, if a new patch

is that L. heterotomamarks its hosts during oviposition to prevent
other females from superparasitizing. This mark does not, however,
t-vjou:;|_-m“S "blbt{o-ru;"botSr;ub;nb]|-mtm
parasitized host (see above), an experience with a superparasitized
host can modify subsequent oviposition decisions through learning

does not contain any hosts or only parasitized hosts, the female
would have had a higher fitness if she had continued exploiting a
ru;"bofled;vtb|-0t)]1l_:-v;70om _;l-ulbm=ttt; _;o
rem of optimal foraging (Charnov, 1976), patch allocation time de-
pends on the fitness gain within a patch and the potential fitness

-|1_ |bl; -ttol-|bom 7;1bvbomv9
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gain expected on future patches available within the environment
(Hubbard & Cook, 1978).

Similar to other parasitoids, patch time allocation in L.heterotoma
is influenced by local conditions on the patch, including the num-
ber and quality of hosts encountered. For instance, the presence of
kairomones, host encounters, and successful oviposition on a patch
increase the time a female investigates that patch (Dicke et al., 198%
Haccou et al., 1991 8" -m tr_;m;| -t:7984; van Lenteren &

-hh;u®78 8(-u-t7h-t:20058(;| ;| -t:I1P93). Furthermore,

females increase foraging efforts in new patches containing sub
strates on which they had a previous successful parasitism experi
ence (Simons etal.1992 8(;| _ "1 _ooml1888). Patch residence
time further increases when superparasitism occurs, as it is adaptive
for females to allocate more time to a patch with conspecifics to
bmilu;Pv; QI r;ur-u-\P|bwil|ut:e~—eQrlom|u%|7m
the time between ovipositions increases (Haccou et al., 199 or par
-vb|bEoV{mlotml|wy;||bmMpu;=u;tt;MT-mr_;m
(;]71986; van Lenteren, 19918(-u-t7 -t:2005), females have
a higher tendency to leave a patch. When females experience such
poor conditions, they will spend more time finding hosts in a new,
7b==;u;m| |<r; o= vtOv|u-|; P(bvv;u7 "xm

Most optimal foraging models rely on oversimplified assump-
tions, such as a global knowledge of the organism's environment in
terms of prey/host density, distance between patches, etc... Such
assumptions are clearly unrealistic, leading to some criticism within
the scientific community (Pierce & Ollason, 1987). These earlier
studies were, however, necessary for new optimal foraging studies
to build upon (King & Marshall, 2022). More recent optimal foraging
models include the notion that foraging behaviors are dynamic and
change within the lifetime of an individual (King & Marshall, 2022).
For example, patch entering decisions and time allocated to a patch
depend on the internal physiological state of females, including en
ergetic reserves, age and mating status (Zhang et al., 2022 as well
as climatic conditions (Roitberg et al., 1992, and learning. L hetero-
toma would be a great model to test more recent optimal foraging
models to further develop optimal foraging theory.
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a riskier strategy maximizing the chances that their genes will be
u;ru;v;mpm_;m;S];m;u-|bPnbu-t7;-tob"b2008).
Furthermore, L. heterotoma survival in multi-parasitized D. mela
nogasterlarvae is lower at a cold (15°C) compared to a higher tem
perature (25°C; Strien-van Liempt, 1983). Host choice in terms of
host species can also affect thermal stress resistance. For exam
ple, survival and female fecundity at low (14-18°C) or high (26°C)
temperatures are lower when wasps are developing on less suit
able hosts (see Section 2 on host suitability), such as Dsimulansor
D. subobscura (compared to Dmelanogastey Fleury et al., 2004; Ris
et al., 2004).

“JJ3$ ( &$ $
& & % & "
! e o1

The ability to accumulate fat is a highly conserved metabolic pro
1;vvluovvt7ol-bnmowtb = buv¢«t:2013; Waltermann &
Steinblichel, 2005). During periods of food abundance, animals, in

tr_; m@ludjng tinged@92use dietary nutrients to meet acute energetic de-

mands, while excess sugars and other carbohydrates are converted
to fat for long- term energy storage. Fat is thus a critical source of
energy for insects to invest in survival and reproduction, particu-
t-ut¥%o _;m-1;%b|_-uvi;m buoml;m¢m7b|Pomwy;v;
Soulages,2010; Hahn & Denlinger, 2011; Sinclair & Marshall,2018).
Fat is further important for other traits, such as locomotor activ -

b|<7;vbl1l-|bov|-mm/Av-1-luomt|ubmh]vP uu;v;

& Soulages, 201Q Muller et al., 2017 Q:07«<vb®;fuoSzo&-|
reserves, because size and fat content are generally correlated in
arthropods; Enriquez et al., 2022; Lease & Wolf, 2011), longevity,
and reproductive output are common life history traits for assessing
fitness in insects (Roff, 2001). Trade-offs between longevity and dis-
persal (e.g., flight), as well as longevity and reproduction have been
%o;tholTl;m|P7t-1_]ut2017; Chang etal., 2021), where fat
allocation underpins both trade-offs. The tight relationship between
fat reserves and fitness thus makes the study of fat accumulation of
importance for both ecological and evolutionary studies.

"*uJJ m=tft;ml; o= v;-vom-t =-1|ouv om r-u-vb|bvl

viu-|;]b;v -m7 =b|m;vv

Seasonal changes can have major effects on insect behavior and fit
m;vRP Ou-J|-t:2017), including parasitism strategies. In L. het
erotoma, females are indeed known to adjust parasitism strategies in
preparation for winter (Roitberg et al., 1992). For example, changes in
photoperiod modify host patch exploitation, as wasps reared under
-t|tIntbhb] jom7b|PewSs IVf Wbm™;v|b]ldvi-|1_;v
longer and superparasitize more often compared to wasps reared
tm7wtll;ulom7b|PemBvI“"7 Q$_;v0;_-"bourttv|
ments could be due to the shorter life expectancy of autumn fe-
males, leading to a riskier oviposition strategy (Roitberg et al., 1992,
following the relative fitness rule. This rule states that when fac-
ing deleterious environmental conditions, parasitoids should adopt

“reJ]J -] -11tltt-|bom

Despite the critical importance of fat reserves, it was only in the
early 1990s that adult parasitoids were found unable to accumu-
late fat including the amber wasp L. heterotoma (Eijs et al., 1998
Ellers, 1996). Using laboratory-reared individuals, Eijs et al.(1998)
were the first to test the effect of multiple food resources (natural,
non-breeding, and artificial substrates) on fat accumulation of adult
L.heterotoma Fat content of L.heterotomawas highest at emergence
and declined despite continuous feeding on honey, and irrespective
of the Drosophilahost used for development. Together with data on
other parasitoid species, this lack of fat accumulation was hypoth
Vb E|,ou;viguo|_;r-u-vb|oh=;v|R{;bvyv;ut;u2008).
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Only parasitoid insects were thus expected to lack fat accumulation,
because sufficient fat for allocation into life history traits could be
l-uub;Zwuol_;_ovlitubmJ;torl;m|[dolr-u-|bV[T7«
with more than 90 insect species then showed that the ability for
fat accumulation was indeed lost during the course of evolution, but
only in parasitoid lineages (including flies, a beetle, as well as para
vb|bal;mor|;u-mma@ obm|_;bmv; P {bvy]ut:2010).
For L. heterotoma7| _;u;vttow(bvv;y -t:2010) differed from
those obtained by Eijs et al. (998), because in the former fat con
tent significantly increased during life, showing that fat had been
accumulated. In at least two other parasitoid clades the fat accumu
lation phenotype seemed to have re-appeared in generalists, sug
gesting that adult fat accumulation could have re-evolved in wasps
with a large host range, including L.heterotoma(see Section2 and
TableS1Q: u;r;|b|Bdvvm W ;]-bor=-F11tItt-|wvah];v]|v
a modification of gene expression, rather than genetic changes in

the wasp's genotype. L.heterotomathus represents an interesting
example of a parasitoid that shows adaptive phenotypic plasticity in
a key physiological trait.

Fat synthesis, accumulation and plasticity therein in L.hetero
toma is currently the core theme of our own research and there are

I-m¢;S1b|bmdvr;lfvetu| yuv;-udbm _bMmrbR(bvv;u

et al., 2022). For example, we still need to better understand how
plasticity of fat synthesis and accumulation affects life histories and
fitness (see the subsection below). We can further use fieldcaught
populations to elucidate how phenotypic plasticity itself evolves in
different natural environments. So far, explicit tests for plasticity of
fat synthesis and accumulation have only been done with L.hetero-
toma (using genetically similar individuals). To determine if plasticity
of fat synthesis and accumulation evolved also in other parasit

ob7¥-Mm<«lou;r-u-vbleb7lbmwo%n;;700;|;v]|;P(bvv;u

et al., 2022). We can also now start digging into the genomics and

lo7bmltt;mlov=-jvem|_;v¥vbwr11tItt-|dom; W (bvv;utranscriptomics of plastic fat synthesis in L. heterotomato under-

et al., 2012). In addition, Moiroux et al. 2010) found that fat accu-

mulation ability differed between geographically distinct L. boulardi
populations (reared on the same host species), suggesting local ad
aptation depending on the environmental settings.

Following the contradictory findings in L. heterotoma and the
intra- specific differences observed inL. boulardi7(bv v ; §i- t 2018)
conducted a large-scale study on the ability of 19 field-caught
Leptopilina populations (belonging to different species) to accumu
late fat in 2016. Thirteen out of 19 populations were L. heterotoma
and these populations were compared to earlier work on 9 geo
graphically distinct L. heterotoma populations collected from the
field in 2013. For the populations collected in 2013, similar results
were obtained as in Moiroux et al. (2010): some populations lacked
fat accumulation, while other populations significantly increased fat
content during life. In contrast, the populations obtained in 2016 (as
well as the other species tested) all lacked fat accumulation. That
puzzling finding resulted from differences between the Drosophila
host strains used. The D. melanogaster strain used for the 2013 pop
ulations was collected from the field and was much leaner compared
to the laboratory-reared strain used for testing the 2016 popula-
tions. This became evident when fat content of recently emerged
L. heterotoma females were compared between years: females
contained almost twice as much fat in 2016 compared to 2013, ex-
plaining why no fat accumulation was observed in any of the 2016
L. heterotomapopulations or the other species.

(-ub-|bbos}1111Tt-| B0 ko ; ;Lmheterotomapopulations
was hypothesized to be the result of phenotypic plasticity (i.e., fat

-11titt-|bloomm7em_ovE-|lom|;m|@Q;1;m||T7%b]|_

L. heterotomaindeed confirmed that fatty acid synthesis and fat ac-
cumulation depend on host fat content (that can easily be manipu
lated in the laboratory; Enriquez et al., 2022). Fatty acid synthesis
and fat accumulation mainly occurred when the wasps developed on
t;-mov|07Po-v_Td=en¥-] ov|R(bvy|ut2021). Reaction
norms for fatty acid synthesis also differed considerably between
L. heterotoma populations, suggesting that fat synthesis regulation
can occur rapidly when host fat content varies and is dependent on

stand the mechanisms at play in generating distinct fat accumulation
phenotypes.

“:*J]J b=; _bv]oub;v

Evidence for the close link between fat reserves, critical as a long-
term energy source, and key life history traits in parasitoids comes
largely from earlier work on the Drosophilaparasitizing braconid
wasp A. tabida. The importance of fat reserves for A. tabida repro-
ductive functions was demonstrated by the positive correlation be -
tween the quantity of fat and female egg load (i.e., fatter females
have more eggs in their ovarioles at emergence; Ellers, 1996Le Lann
et al., 2014). Moreover, a higher fat content leads to higher adult sur
vival (Ellers,1996). Fat reserves also fuel Atabidalocomotion, as fat
reserves decreased with increasing dispersal distance (Ellers et al.,
1998). Similar to most other parasitoids, A tabida does not accumu
late fat (Ellers,1996), limiting the amount of fat reserves available for
fitness functions. Fat content of A. tabida indeed decreases quickly
during the first week of life, when many eggs are laid (Ellers, 1996.
During this time, fat reserves are thus mostly allocated towards re-
production, leading to trade- offs with other life history traits (Ellers,
1996 Q:t| _otf]lou;v|T7bogwh. heterotomaare now appearing,
particularly concerning fat synthesis and accumulation (see above),
very little is known about the link between fat content, life histo -
ries, and trade-offs. Preliminary work using L. heterotoma confirms
the major importance of fat reserves, at least for survival, because
fat content at emergence determines longevity under starvation for

I-t;vPb:s:7|;lut;v_-";-tom]to=;vrPm{(@Qvv;fudrtOtbv_;7

data, Table2).

Offspring sex ratios of parasitoid wasps have been of partic
ular interest in the context of local mate competition theory (see
Section 7; Godfray & Cook, 1997; Hamilton, 1967), but host quak
ity can also affect sex allocation patterns (Charnov, 1979 1982;
Clark, 1978; Godfray, 1994; Hardy, 19948 (bvv;y -t:2014).
Charnov theorized that sex allocation of parasitoid females depends
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measurementsofL.heterotomaP (bvv;u7 B B Pmtl0:u 0= I-t:vE
unpublished data) P7-<vQ ==vrubm] mtl®;ut o==vrubm]Q

ortt-|[bomov| 7b;| ;-m  1SE ;-m SE ;-m  1SE

Lh8, Japan Lean 5.95 0.22 73.67  10.05 1 0

Control 8.21 0.62 33.88 4.43 0.47 0.12

Fat 10 0.32 15.33 3.96 0.47 0.16

Lh9, UK Lean 5.47 0.37 36.88 4.63 0.41 0.13

Control 7.44 0.34 41 6.36 0.53 0.14

Fat 9.45 0.21 38.25 7.05 0.29 0.07

Lh10, UK Lean 5.58 0.43 39.63 4.36 0.70 0.14

Control 6.86 0.43 37.44 4.60 0.37 0.09

Fat 8.60 0.76 53.50 8.98 0.47 0.16

Lh13, Lean 6.33 0.23 73.29 3.99 0.46 0.14

BT Gontrol 814  0.28 5450 864 042  0.09

Fat 9.13 0.29 56.71 797 0.29 0.03

-t; tom]; b«

Note: For each trait the mean @1 SE is provided. Data were obtained from wasps reared at 23°C
with females ovipositing on lean, control, and fat D. melanogasteihosts (obtained as in Enriquez
etal., 20228 (bvv;u ;| -).Moa@&lty under starvation was determined for males that
developed on lean or fat hosts.

on host quality (typically measured as host size) when host quality
affects the fitness of sons and daughters differently (Charnov, 1979;
Charnov et al., 1981). Charnov's model assumes that host body size
(and associated fat content, see above) is a key determinant of both
female and male fitness. The relationship between size and fitness is
even more important for females, as they benefit more from being
large compared to males (i.e., a higher reproductive success and fe
cundity are typically proportional to host size). Males are then laid
in smaller hosts, while females are laid in larger hosts, optimizing
host exploitation. For several parasitoid species, the proportion
of males was indeed shown to decrease with increasing host size
(Charnov, 1982; Godfray, 1994; King, 1993). In L.heterotoma sex
allocation also seems to be dependent on host quality: sex ratios
are generally malebiased when females lay eggs on lean hosts, and
=;1-t;0b-v;@dm=-|_ov|R (bvv;tumrtO0tbv7-)|7?Bable 2).
(- u b - | bohrheterotomaoffspring sex ratios also appears to be de
pendent on the wasp population (Table 2). It remains unclear, how
ever, if and how parasitoid females can estimate host size, which can
vary largely in time and space.

Clark (1978) proposed that local resource competition can also
affect sex allocation. If resources are locally limited, parasitoid fe
males may be forced to compete with each other females for ac
1;vyou;votu®P;Mvyvjut:2014). Under such circumstances,
mothers limit competition among daughters and allocate more re-
sources by producing sons that can disperse (maleésiased sex ratio).

v-u;vtopobmlu;-ydm-|tutbLvboulardi a major compet
itor of L. heterotoma is migrating towards more northern parts of
Europe, replacingL. heterotoma The presence of L. boulardresults
in higher mortality and lower host availability for L. heterotoma
(Fleury et al., 2004). To cope with increased competition, higher fe-
cundity and investment in mobility (to be able to find more suitable

hosts), coupled with a shorter life span (that is traded-off) are ex-
pected based on the balanced mortality assumptions of Price {974).
However, no clear distinction in life history traits between L. hetero-

toma populations, with or without L. boulardi7%o. - o0t nPq-<vv-7;

et al.,, 2012 8( T - u b;in-t:2012). Moreover, host- (e.g., age, sex, or
species) or wasp-(e.g., species, genotype, maternal size, age, diet,
or microhabitat) related traits need to be considered in future stud-
ies on parasitic wasp sex ratios, including Lheterotoma (Chabora
et al., 1979; King, 1987).

Endosymbionts can have a major impact on their host, includ
ing life histories (see Section 7 on cytoplasmic incompatibility).
For L. heterotoma attacking Spiroplasmainfected and uninfected
Drosophilg no differences were, however, found in the number of
eggs laid (Paredes et al.2016; Xie et al., 2010,2014 Q :u; 1;m| t 7«
on Spiroplasmashowed that this endosymbiont actually subverts
specific host lipids and its proliferation is limited by the availabil-
ity of host hemolymph- lipids (Herren et al., 2014). Spiroplasmaand
wasp thus seem to compete for Drosophilahost resources, a pattern
already reported for L. boulardi(Paredes et al., 201§. The presence
of Spiroplasman some Drosophilahosts can thus have major conse
guences for lipid availability during development of L. heterotomg a
factor known to affect fat acumulation in adults.

“-bt-ObtmTIt-tbdpeau;votuly¥%d; ttv-0bo|h-L|ouv7

such as temperature, are fluctuating at different temporal scales in
the environment (between years, seasons, days,...). Temperature
is known to have a major effect on female parasitoid behavioral
7;1bvbBou-]bmovl _ob1t8| ;| -t:2006; Moiroux
et al., 2015) that can affect offspring nutrient acquisition during
development and consequently fat accumulation and fitness.
L. heterotoma occurrence is widespread, which is typically as
sociated with a high tolerance to a wide range of temperatures
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P 770Jb-hd-t2D00; Sunday et al., 2012). Life histories in
L. heterotomaseem to be optimal between 20 and 23°C. Indeed,
survival of developing L. heterotoma (Ris et al., 2004 Rossi
Stacconi et al., 2017), fecundity of females (Fleury et al., 2004 Le
Lann et al., 2014 Ris et al., 2004, and parasitism success (Rossi
Stacconi et al., 2017) decrease at lower (14-18°C) or higher (25—
35°C) temperatures. Temperature further has a significant effect
on resource-use strategies of L. heterotoma females reared at
20°C accumulated a significant amount of fat reserves, whereas
individuals at 23°C did not accumulate fat (Le Lann et al., 2014.
More studies are now needed to fully appreciate how tempera-
ture, and fluctuations therein, affect resource acquisition, use (i.e.,
fat accumulation phenotypes), as well as life histories and trade-
offs in L. heterotoma

" JJ s " " * "%

There are currently more than 2000 recorded species within the
host fly subfamily Drosophilinae (O'Grady & DeSalle, 2018. Within
the genus Drosophilathere have been several major adaptive radia
tions, and some lineages have high diversification rates related to
resource-use (Markow & O'Grady, 2008 Q:t|_ot]l_;mtI0;0=
parasitoids known to attack Drosophilaspecies are underestimated
(Lue et al., 202)), there is already high intra-and interspecific com-
petition for hosts within the guild of parasitoids associated with
Drosophila In this section, we introduce the guild of Drosophila
r-u-vblobv@bvlitwylb:0tm7-miAmiuorim7vb-);
further describe how competition for host resources can lead to po-
tential speciation, and how spatial and temporal resource partition-
ing allows species coexistence.

The amber wasp L.heterotoma belongs to a large guild of
parasitoids attacking Drosophila species, with a current count
of 108 species belonging to 20 genera (Carton et al., 1986
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Lue et al., 2021; Table S2). The use of Drosophilahosts evolved
independently in the superfamilies Ichneumonoidea, Cynipoidea,
Chalcidoidea, and Diaprioidea. Hosts are attacked either during
the larval stage (e.g., LeptopilinaGanaspis Asobarg Opius) or the
pupal stage (e.g., Pachycrepoideuspalangia Trichoprig Carton
et al., 1986 Q :ttt-u "+t u-vb |odBrosophilaare endoparasit
oids, while the pupal parasitoids are either ectoparasitoids (i.e.,
Pteromalidae) or endoparasitoids (i.e., Diapriidae; Figurd; Carton
et al., 1986). P. vindemmiaeand Spalangiasp. were further found
as secondary parasitoids, also called hyperparasitoids, on primary
hymenopteran (e.g., Leptopilinaand Asobaraspecies) or dipteran
hosts (Gibson, 20098"-m tr_;m $_ 1T mmb 1982 Tn terms
of developmental strategies, all braconids attacking Drosophila
are koinobionts (i.e., allowing host growth after parasitism), while
species in the subfamilies Pteromalinae and Spalangiinae are idio
bionts (arresting host development). The guild of parasitoid spe
cies associated with Drosophilathus shows great diversity in host
exploitation strategies.

In Europe, the larval endoparasitoids L.heterotoma L. boulardi
and A. tabida are common (Fleury et al.,2009; Knoll et al., 2017;
Mazzetto et al., 2016), sharing different host species, such as
D. melanogasterD. simulans and D. subobscura (Fleury et al., 2004
2009; Kraaijeveld & Godfray, 1999).D. phaleratais the most abun-
dant fungal-feeding host and is parasitized mainly byL. clavipes
(Driessen et al., 1990Q:lom] | _;rfr-tr-u-vb| o viadem
miae, T. drosophilag and the genus Spalangiaare the most com-
lombmfuorP ;trf;1 tt;Il-m2011; Fleury et al., 2009,
Kremmer et al., 2017). Data on the occurrence of Drosophilapar-
asitoids and their hosts are relatively scarce outside Europe and

vbPOT|[;; Ou-I;|-t2D022; Lue et al., 2018for data in North

l;ubl-Mm7;==V-t2021 for data in Oceania). Pvindemmiae
and T.drosophilag which are cosmopolitan, are the main pupal pafr
-vblobhhwb P --m;| -1t:2016; Giorgini et al., 2019; Mitsui
et al., 2007). In Japan, the most common drosophilids feeding on

Larval
Pupal
Koinobiont
Idiobiont

EndOpaFanItO.Id of the four main wasp families

Ectopara5|t0|d parasitizing Drosophila Each family
is visually represented by a common
species: Figitidae—eptopilina
heterotoma7 u-1 o m BA3ohdra
tabida, Pteromalidae—Pachycrepoideus
vindemmiae Diapriidae—richopria
drosophilae Eggs of ectoparasitoids are
laid on the outside of the host, whereas
those of endoparasitoids are laid inside
the host. Endoparasitoid larvae may,
however, develop some time outside
the host body, depending on the species
(see Figure3 for L. heterotomawhere this
occurs; Harvey & Strand, 2002).

& ! “J b=;v|<«t; 1_-u-1]|;ubv|
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fruits in temperate regions are the native D. lutescens D. suzukij
and the exotic D. simulansand D.immigrans (Kimura et al., 1994
Mitsui et al., 2007; Mitsui & Kimura, 2010). Parasitoids attacking
these species areA. japonicg which has a remarkably large host
range, and G brasiliensigcurrently considered as a cryptic species;
Kimura & Mitsui, 2020 ; Mitsui et al., 2007; Mitsui & Kimura, 2010).
The same species are found in South Korea (Daane et al., 2006
while in China G.brasiliensisL. japonicaand A. mesocaudaare the

Ecology and Evolution JM|[Je 0= ‘-
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et al., 2015). L. heterotomais distributed across the temperate re-
]Jbomo=tuor;¥b-du|_l;ubl-m71;-mb-|_-\v0;;n0
served up to Sendai in Japan, although the records furthest South
(Tokyo) were recently proposed to be cryptic species (based on
sequencing of neutral mitochondrial and nuclear markers; Kimura
& Mitsui, 2020 ; Novkovic et al., 2011).

Considering that hymenopteran parasitoids belong to one of the
most diverse insect orders (Forbes et al., 2018, it is not surprising

most common parasitoids (Giorgini et al., 20198 b u 0 7&/u 0 %o b ; 1that an increasing number of cryptic parasitoid species are being dis

et al., 2018). The G.brasiliensislineage that specializes on D. su
zukii could represent a suitable biocontrol agent against this pest
(Nomano et al., 2017), once the species within this complex are
formally described (Seehausen et al., 2020.

"1eJ]J u<r|bl vr;lb;v

When resources, such as hosts, are limited competition between
vr;lbjbvm|;mvbsbgV{lolp=bm|;mlvglr;|b|blvhot
petitive exclusion, where one of the competing species ultimately
goes extinct (Losos, 2000Q:t|;um-| b mtq7 uxitt; 1| bbrm
favor phenotypes within a population that avoid resource com-
petition. Populations can thus diverge in resource use, lowering
competition and allowing species coexistence, potentially leading
to speciation. L. heterotomabelongs to a speciesfich genus, con
taining more than 30 species, that is divided into several groups,
including a L.heterotomagroup (Figure 5). Two species within this
group have a broad distribution (L. heterotoma L. victoria€), while
|_;o0|_s;wur;1bsw;u;v|ublj; A b . pacifica L. ryukyuen
sis L. japonica L. tokioensisQo u =u b P- guineaensis Some of
these species have only recently been described and their biol
ogy still remains largely unknown (Novkovic et al., 2011; Wachi

covered (Gokhman,2018). L. heterotomafrom Sendai and Sapporo
appear genetically most similar to European strains, two potential
cryptic species were identified in Tokyo, and the genetically most
7b7ul;wrl; lb%--1t]_¢m_;bvt-mubolofm7I-IbJ
oshima (Novkovic et al., 20118(bvv ;4 -t:2018; Figure 5). The
three cryptic species indeed appear to have shifted host use, with
one of the Tokyo species parasitizing mainly D. bizonata breeding
on mushrooms, the other Tokyo strain parasitizing Scaptodrosophila
coracinabreeding on fruits, and the island species mainly parasitizing
Lissocephalapecies that breed on figs. It is still unclear whether the
strains identified can still interbreed, but these potentially cryptic
species offer interesting opportunities to study speciation in action
(Struck et al., 2018).

":*J]J bl_; r-u|b]l]bombm]

Over shorter time scales, competition for hosts can be re
duced through temporal or spatial niche partitioning (Germain
et al., 2018; Harvey et al., 2014; Kronfeld-Schor & Dayan, 2003).
Due to its broad distribution across the world, L. heterotomain-
teracts with and can face severe competition from other wasp
species, mainly those attacking frugivorous Drosophila such as
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tokioensis

guineaensis

heterotoma
group

/ pacifica
— heterotoma
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its congener L. boulardi and the braconid A. tabida. Indeed, no
clear spatial niche differentiation seems to be apparent for these
three species (Fleury et al.,2009 Q: v |t 7r;u=oul pmh_;&
showed that A. tabida and L. heterotoma are abundant and co-
occur from May to September (Godfray & Hardy, 1990), while in
the Southeast of France L.heterotomaand L. boulardi dominate
with relatively few A. tabida bm 7 b~ b 7 utM mquolrubjto
September (Fleury et al.,, 2009. In Tunisia, L.heterotoma faces
intense competition from L. boulardi which is probably causing
L. heterotomds competitive exclusion during most of the season
(Carton et al., 1991Q:0tm7-mal=lolr;|bmju-vb|obbriv;
Southeast of France seems to follow that of the different host
species (Fleury et al., 2009. The geographic range of L.boulardi
is restricted to the Mediterranean, where the host D. simulans
dominates, while in the North L. heterotomathrives developing on
D. melanogasterL. heterotomaabundance also reaches only a few
percent when L. boulardiis present. Under such intense compe
tition, L. heterotoma seems to persist as a result of phenological
differences between parasitoid species, with L.heterotomabeing
present and most abundant only very early and late in the season.
This is possible, because unlike Lboulardij L. heterotomadoes not
diapause in winter (Carton et al., 1991, Kimura, 2019).

Leptopilina heterotoma seems to have a competitive advantage
when L. boulardi females are infected by a virus, the L. boulardi fil-

viuom]bwi|ubtovibib|®w;}_ :;m;Syt0v;1|botmi8m?7
et al., 1999; Carton et al., 1991).

Once competitors do arrive at the same patch, competition can
still be avoided: Janssen et al.1995) showed that when L.heterotoma
interacts with its congener L. clavipeson decaying stinkhorn patches,
L. heterotomaavoids patches where L. clavipess present. The same
avoidance strategy was found when L. heterotomawould encoun-
ter patches with L. boulardi Weiss et al. 013) indeed showed that
L. heterotoma females avoided host patches that were already oe
cupied or exploited by both conspecific and heterospecific female
wasps, as well as wasp extracts.L. heterotoma females thus use
different environmental factors to avoid competition on larger and
smaller spatial and temporal scales.

":'J]J m|lubmvbl lolr;|b|bom

When competitors cannot be avoided and egg laying occurs in the
same patch, Lboulardi outcompetes L.heterotoma. When both species
were allowed to lay eggs at the same time with access to the same host
(D. simulans)L-. heterotoma parasitism rate was reduced from 50% (par
asitizing alone) to 30% (together with L. boulardi; Carton et al., 1991).
Furthermore, L. heterotoma developmental success was also reduced,
from 51% to 37%. Similar patterns were found by Fleury et al. (2009)

-lsmlotUbutR 0 (Q -|bmlu;-y;vu-|;0=vtr;ur-u-vb|busing two host species (D. melanogaste). simulans), although geno-

(Section3Q:v - 1omv;tT;n¥l % ;a==vrudmmh =; 1. poulardi
females reach adulthood allowing L. heterotoma to predominate, at
least in laboratory experiments (Patot et al., 2012). In the field, 55%—
95% of L. boulardi=;1-t;¥-< O;bm=;1%B|0 (77;r; m7bom}
the location, with infection increasing towards the South (and being

types originating from more Southern populations in France were

better at competing with L. boulardi (~30% L. heterotoma emergence)
compared to Northern populations (~10% L. heterotoma emergence).
This suggests that there is local adaptation for increased competitive
ability in populations where L. heterotoma and L. boulardi co-occur.

-0v;nbjrh_; ou|_Q@mvb7;4bmbu-v|bE;DEFO0 (bm=;1|bom Once a host contains more than one developing parasitoid, in

on L. boulardi's parasitism strategy, it can be expected that competi-
tiveness is lowered in infected L. boulardi also in natural populations,
but this remains to be tested.

On even smaller spatial scales, L. heterotoma can avoid competi-
tion using chemical cues to select a preferred microhabitat for ovi-
rovb|bom;:S-Irt;7;| -m7-mrE;;t-nP1985) showed that
L. heterotoma prefers substrates that are in a later stage of decay,
compared to A. tabida that prefers substrates at an early stage of
7;1-®(;]| -t:1P84). These findings confirmed anecdotal field
observations where A. tabida appeared near substrates about the
same time as the hosts, while L. heterotoma rr;-u;dmt«-|; & (;|
& van Opzeeland, 1985). Due to differences in the temporality of
parasitism between A. tabida and L. heterotoma, where hosts para-
sitized by A. tabida are likely already at the pupal stage, multiparasit-
ism and direct competition can be avoided. Furthermore, circadian
rhythms leading to temporal segregation can also contribute to co-
existence between the three main competing Drosophila parasitoids.

m v|t78« t;tuc<«t;l-m77T-t:P2000), the authors compared
the circadian rhythms of L. boulardi, A. tabida and L. heterotoma,
revealing that within a single day, L. heterotoma and A. tabida are
active and ovipositing earlier than L. boulardi: o|_L. heterotoma
and A. tabida can thereby avoid competition with L. boulardi, the

tense intrinsic competition is unavoidable, because only one paf
asitoid can utilize and survive on one host. In experiments where
A.tabidaand L.heterotomawere laid in the same host D. melanogas
ter), generally one of the competitors is eliminated through physical
attack by the first hatched larva (Strien-van Liempt, 1983). Which
species survives depends on several factors, including the time
interval between oviposition, temperature, and multiparasitism.
Studying coexistence and competition between Drosophilaparasit
oids is now particularly relevant in the context of climate warming,
as L. boulardi is migrating northwards, leading to population (and
potentially genetic) differentiation in thermal reaction norms of life
histories in marginal populations (Delava et al., 2023. Future studies
on the consequences of the recent range expansion ofL. boulardion
competitive interactions can help to better understand and predict
the effects of climate change.

udlJd & $
" o +

Chemical communication probably constitutes the oldest and most
widespread form of communication, occurring in all domains of life
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(Wyatt, 2014 Q:t| _ot]v; ;u-ttm7uy7S_;uolontolre
nents (i.e., molecules involved in mating behavior or related pre
cesses between individuals of the same species; Wyatt, 2010 have
been identified (El-Sayed, 2022, the origin and evolution of sex
pheromones are still not well understood for most animals. Most in-
sects produce sex pheromones to stimulate mating behavior through
sexual attraction. The release of sex pheromones may be related ei
ther to the attraction of the opposite sex, generally via highly volatile
compounds released by females to attract males over long distances,
or as a part of male courtship behavior at closer range, generally
"bto%ot-|bIplrotmPvc-vy; -t:2001; Kohl et al., 2015;
Renou,2014).

In the amber wasp L.heterotoma iridoids play a key role in the
mate-finding process (i.e., in the attraction of males to females).
Weiss et al. 013) highlighted that the sex pheromone of L.hetero-
toma bVv-bmtdolrov;70=P " Qdo7o0l«ul;1h::]%r; odome
terpenoids), a highly volatile compound produced by female wasps.
Four additional minor iridoid components, ((+)-isoiridomyrmecin,

two irodials and a third stereoisomer of iridomyrmecin), appear
to be essential for the sex pheromone to be completely bioactive
and highly attractive to males (Weiss, Hofferberth, et al., 2015,
Weiss et al., 2013; Table 3). These compounds are produced and
stored in a cephalic gland, more specifically in a pair of mandibular

glands (Stokl et al., 2012 Stokl & Herzner, 2016 Q: u; 1;nv| T 7«

with several Leptopilina species, including L.heterotoma tested
the attraction of males towards patches with the odor of the op -
rovbp;:;Sou _;o070a=_ov|R X||bm]¥"§IXhatR0). Males
were only attracted to patches if females were present and were
not attracted by host odors (living Drosophilalarvae on the host
patch). Females were more attracted to patches containing host
odors than to conspecific male odors, irrespective of their mat
bmy|-|TR "budkim|; 78 X||bm];u| Xha020). This result is
consistent with earlier studies showing that L. heterotomafemales
can eavesdrop on adult Drosophilgpheromone communication, to
which females are attracted to locate larval laying sites (Wertheim
et al., 2003; Wiskerke et al., 1993).

$ "J bv] o= bub70b7 1olrotm 7heterotomamal@s Gndlfemales (a), with or without ant predator attack (b), in mated and

virgin females (c), and mate attraction quantities (d).

;-m -lotm| brmel®OP

=3 sll=iig
a. Iridoid compounds found in L.heterotoma
P'RUb7ol<ul;1bm -

+)-isoiridomyrmecin

Iridodial 1 Trace
Iridodial 2 -
Third stereoisomere of - “r4Se:
iridomyrmecin
b. Total amount of iridomyrcecins released by L.heterotoma
Females (10), not attacked 'S+ S
Females (10), attacked by Myrmica  'e+e$ S«
rubra
Females (3), attacked by Trace
Cardiocondyla obscurior
Females (3), attacked by M. 18.2*
scabrinodis
Males (10), not attacked "ivS£S‘t
Males (10), attacked by M. rubra Ue:¥S'e:u
1: $o|-t -lotTm|babdPsRul;1bm u;t; hetefotdrma.
Mated females (10) 'S+ S’
(bulbm =;l-t;v PeeQ 15.5*%
7: lotm| detérotomafemale |lu-1]bom o= I-t;v
iridomyrmecins (in ng)
60 Yes
30 Yes
15 Yes
Yes
4 No

—'BSTv re8S*IVF"IvSt S’
‘U:sSS’':'Fee:—S+S':v
—4SSe:VF"S+Se:u

l;=;u;m1l;

U’ SE S eiuFeee:e S+ SeBtokl et al. 2012), Weiss, Hofferberth, et al. Q015)

Stokl et al. @012), Weiss, Hofferberth, et al. 015)
Stokl et al. R012), Weiss, Hofferberth, et al. 015)
Stokl et al. 2012), Weiss, Hofferberth, et al. @015)
Stokl et al. R012), Weiss, Hofferberth, et al. 015)

Stokl et al. 2012)
Stokl et al. 2012)

Stokl et al. 015)

Stokl et al. 015)

Stokl et al. 2012)
Stokl et al. 2012)

Stokl et al. 2012), Weiss et al. g013)
Weiss et al. 013)

Weiss et al. 013)
Weiss et al. 013)
Weiss et al. 013)
Weiss et al. 013)
Weiss et al. 013)

Note: The mean &« SSBr median (*) amounts are provided in ng based on reported values in the cited references.
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Sex pheromones can also play a key role for species recog
nition and mate choice on a short range. Within the Leptopilina
genus, females of most species, including L. victoria@Neiss, Ruther,
et al., 2015), L. clavipes (Pfeiffer et al., 2018) and L. ryukyuensis
P X||bm];ut:2019) rely on cuticular hydrocarbons and/or iri-
doids, to attract males. In contrast, L.heterotoma solely relies on
bub7db Xy |bm];u:2021). The specificity of mate attraction
in L. heterotoma remains unclear, however, as contrasting results
have been obtained (Fauvergue et al., 1999 Weiss et al., 2013). The
question is whether males are still able to discriminate against het
erospecifics during courtship. To test this, Weiss et al. 2013) com-
pared wing fanning times (i.e., part of the courtship sequence; see
Section 7 on mating behaviors) of L. heterotoma males when pre-
sented with paper filters impregnated with either L. heterotomaor
L. boulardi female iridoids. Male wing fanning lasted significantly
longer when L.heterotomamales were exposed to iridoids from con
specific females, meaning that males recognized conspecific females
and were prepared to mate. Mate recognition (as opposed to mate
attraction) is thus speciesspecific and mediated by a blend of iri
doid compounds characteristic for L.heterotoma(Weiss et al., 2013
Weiss, Hofferberth, et al., 2015; Weiss, Ruther, et al., 2015.

Sex pheromone communication was proposed to have evolved
from precursor molecules initially used for other purposes, i.e., the
sender-precursor hypothesis (Stokl & Steiger,2017; Wyatt, 2014).
This hypothesis states that any compound released by one individual
and detected by another individual of the same species can evolve
into a sex pheromone if there is a selective advantage for both sender
and receiver (Wyatt, 2014). Chemical compounds are generally syn
thesized in limited quantities and assumed to be costly, so reusing
existing compounds for chemical communication may be favored by
selection, a phenomenon referred to as “semiochemical parsimony”
P t11996). For a long time, data supporting the senderprecursor
hypothesis remained rare in insects, mainly because most studies
only experimentally tested a pheromone's function, while neglecting
the study of primary functions.

Sex pheromones in L.heterotoma have attractive properties,
but also seem to be repellent. L.heterotomafemales indeed emit
- 7;=;mvbSlu;|bbolrov; =P RUWb7ol<ul;Rbum T
80% of the secretion) and minor amounts of the four other iridoid
compounds (Stokl et al., 2012 Weiss et al., 2013). In males, this
secretion is composed of a single compound: €)-isoiridomyrmecin
(Stokl et al.,2012). The pheromone secretion is released during an
attack from natural enemies, such as ants, but in much higher quan
tities compared to use as sex pheromones (Stokl et al., 20122015;
Table 3). Due to the larger size of female L.heterotomamandibular
glands, females can release larger amounts of iridoid compounds
than males (Stokl & Herzner, 2016. Females are also able to dis
criminate between predator species and to control and adjust the
amount of iridoids to release accordingly (Stokl et al., 2012 2015;
Stokl & Herzner, 2016; Table 3).

$_ ;| _u;;=oftV;0=P " RUb7o0l«ul;Adnheterotomaas sex
pheromone, for defense, and competition avoidance (see Section 5
on competitive interactions; Weiss et al., 2013), represents an

example of a semiochemical parsimony that reinforces the sender-
precursor hypothesis (Stokl & Steiger, 2017 Wyatt, 2014 ). The use
oP ' RUb7olculibbm -";;"0t";Zuod7;=;mvbojrotm?7
to a competition avoidance cue to a female sex pheromone (Stokl &
Steiger, 2017). In this context, the costs and benefits for males re

viom7Hodub7dbvpo;;"-tt-|;D71-TW RIb70lcul;1bm

attraction can both increase the probability of finding a female and

thus mating success, but at a risk of being harmed by a predator if
the defensive chemical compounds released by the female are not
vt==blbumittw;|:vv;vvbm}7-|bomvm7_;tv;0=7+:

fensive compounds in natural populations or recently field-caught

Leptopilinawasps would help to determine the selective pressure on
males to better understand the evolution of sex pheromones.

<JJ 8 J $ $1 $
& $ "$1& $&!

Mate finding, dispersal, and mate choice decisions can have major
evolutionary consequences that have often been studied in parast
toids by examining patterns of sex allocation (Hardy, 1994). Key the-
oretical advancements were made by Fisher's frequency dependent
selection for equal sex ratios (Fisher, 1930, and Hamilton's local
mate competition theory predicting female- biased sex ratios be
cause related males compete for mates (Hamilton, 1967. Depending
on the system, the ecology of mating can lead to clear population
structuring (local mating) or panmixis (random mating) at the ex
tremes, although intermediate mating structures, such as partial
local mating, may actually be most common (Hardy,1994). In this
section, we look at research concerned with mate<finding, dispersal,
mating, and sex ratio distortion in the amber wasp L.heterotoma

In many animals, mate finding is a crucial step for producing v
able offspring, but in haplodiploids, such as Hymenoptera, mating
is not a necessity (Cook, 1993 Godfray, 1988, 1990; Godfray &
Grafen, 1988; Hardy, 1994). In haplodiploids, including L heterotoma,
unfertilized eggs develop into haploid males and fertilized eggs into
7brtobd-t;W ;blr;t 7; o;u2008 Qtbu]bml-t;vu;|_tTv

m 7able to reproduce, but generate exclusively male offspring (so€alled

“constrained sex allocation”; Godfray, 1990), whereas mated females
can control the sex ratio of offspring by choosing whether to fertilize

-m;]] 0;=0ow; brovbpumm| mo|_;uomv;tt;m%;-rto7br

loidy is that virgin females face a trade-off between mate- searching
(to be able to produce daughters) and hostsearching (to immediately
produce sons only; Godfray, 1990). In contrast to female reproduc-
tive success (e.g., the number of eggs produced), male reproductive
success depends on the number of fertile females he can mate with,
leading to distinct reproductive strategies for both sexes.

:¢J|J bvr;uv-t

m-u;1l;m|T7«<X||bm};m7|XIH#020) investigated mate find-
ing and dispersal from the natal patch in males and females of four

85U017 SUOWIWIOD BAIEa.D 3|ceotjdde aup Aq peusenob ale sejole VO ‘88N Jo sejni Joj Ariq1aulUQ AB]1M UO (SUOIPUOD-PUe-SLLBIWOD S| IMALeiq 1 BulUO//:Sdny) SuonipuoD pue swis 1 8y} 88s *[£202/T0/2] Uo Ariqiauluo A8|im ‘96Q - Ined Uouiy L Aq 5296°€899/200T 0T/10p/LLoo" A3 1M Ateuq1|puluo//:sdny ol pepeojumoq ‘T ‘€202 ‘85.LSH0Z



QUICRAY ET AL.

Leptopilina species, including L.heterotoma On average, L.hetero
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we can assume that the high dispersal rate also decreases fights

tomal-t;v;l;u];7-00t|S7-O;,=0w;|-t;WPOW|;; bfv-1h;uwmong male wasps (Godfray,1994). Such a strategy, where males

-m7 -hh;#871) and Fauvergue et al. 1999) showing within-brood
emergence is similar for males and females). This daily rhythm
could be an adaptation to competition between males, as the first
emerging males can court and mate with more females (Fagerstrém
& Wiklund, 1982 ; Fauvergue et al., 1999 Pompanon et al.,1995).
Dispersal of both males and females occurred directly after emer
gence from the natal patch. Males thus start dispersing before con
specific females emerge on the same patch. Fauvergue et al1999)
indeed already showed that about 20% of both males and females
emerged without a potential mate present. Moreover, dispersal of
L. heterotomafemales was up to three times higher compared to the
other Leptopilina species, where a similar proportion of males and
=;1-t;wbvr;uw, 72X || bm]" pX ha020; Fauvergue et al., 1999.
Individuals that emerge (and disperse) in the absence of conspecif
ics may favor off-patch matings and reduce local matecompetition,
but on the other hand may compete with males present on another
patch. Dispersal of L.heterotomathus appears to differ from other
Leptopilinaspecies and other parasitoid wasp species, where males
wait for the emergence of conspecific females to mate on the natal
patch (Carton et al., 1986; Godfray, 1994; Godfray & Hardy, 1990).
Post-emergence dispersal of L heterotomamales appears to be ben
eficial and does not pose a risk in finding mating partners.
(-ub-|borhbvr; u%sb|_|bnieptopilinagenus was recently
found to be related to chemical compounds released by females
P X]|bm]"ux h2020). The volatility of sex pheromones can be an
important determinant of male and female wasp dispersal behavior
P X || bm]} X ha020). For Leptopilinaspecies that use highly vot
atile sex pheromones (i.e., iridoids; see Section 6 on chemical com
munication), such as L.heterotomaor L. japonica males started to
disperse immediately after emergence and the presence of females
7o0;wmo{==;1];7bvr;uu-t;P X||bm];UXh2a20).L. het
erotoma females also showed a significantly higher dispersal rate
compared to heterospecific females emitting sex pheromones that
are less volatile. Furthermore, whether hosts are present or not can
affect dispersal propensity. L.heterotomamales were more attracted
to patches with females, whereas virgin and mated females dispersed
|o%-u7y1_;tom|-bmlm@7our X||bm];yXh2020).
Moreover, L. heterotomamales were found to be attracted to vola-
tiles emitted only by their conspecific virgin females (i.e., there was
no attraction to mated females) both in the field and in the labora-

tory (Fauvergue et al., 1999Q:-v;7o0mvblbt=bm7 tbmjmo|_;u

wasp (Lysiphlebus testaceipg@swe can hypothesize that L. heterotoma
virgin females are able to search for hosts while emitting sex phere
mones to attract males (Fauvergue et al., 2008. Dispersal of males
would then be driven solely by mate-searching (and feeding), which
is indeed easier for species that emit highly volatile iridoid sex pher
omones, such as Lheterotoma The high dispersal rate of L.hetero-
toma males may increase their mating opportunities and success, as
they can mate several times in nature, while females seem to mate

disperse rapidly from the natal patch in search of females guided by
volatile pheromones deviates from expectations under local mate
competition in haplodiploid species (Hamilton, 1967; Hardy, 1994).
Parasitoids can lay a single (solitary) or multiple eggs (gregarious)

inside a single host. When hosts are aggregated on patches, how
ever, solitary parasitoids can be considered “quasigregarious”. L. het
erotoma s indeed quasigregarious, due to the high aggregation of
Drosophilalarvae on single patches (Fauvergue et al., 1999 Mating
in L. heterotomawas assumed to be restricted to a local patch, where
brothers compete for females, leading to strict local mate compe-
tition and female-biased offspring sex ratios (Hamilton, 1967). The
mating system of some parasitoid species, including Lheterotomag
does, however, not seem to follow Hamilton's predictions (Fauvergue
et al., 1999; Hardy, 1994). Reviewing the mating structure of 22 par-
asitoid species, Hardy(1994) concluded that complete local mating is
exceptional, rather than the norm in gregarious and quasigregarious
parasitoids. Moreover, Fauvergue et al. {999) reviewed the litera-
ture on long-distance volatile sex pheromones in parasitoids and
found that 21 species, including L.heterotoma use sex pheromones
for mate finding, including gregarious, quasigregarious and sot

b|-uvr;1b;gat-|bv;Sr_;uolom:bl|o=-1btbfHyr;uv-t

and off-patch matings, which in turn reduce local mate competition,
sib-mating, the risk of inbreeding, and competition between males.
$_;lomlttvbemy|bml;m7|XhR020) align well with the
suggestion of Hardy (1994) and results of Fauvergue et al. 1999)
that L. heterotomashows partial local mate competition, with both
on-patch and off-patch mating. These observations reinforce the
conclusion that off- patch mating may be frequent in gregarious and
quasi-gregarious parasitoids, but more data is needed to develop hy
potheses on the evolution of such mating structures.

:'J|J otu|v_br -m7 I-]|bm]

Once a potential mate has been located, L heterotomashows a ste-
reotypical courtship sequence, like many other insects (described
in more details in Isidoro et al., 1999 8"-m7 ;m vv ;17969 Q:0o| _
males and females are sexually receptive immediately after emer
gence. Courtship starts with the male rapidly fanning (i.e., vibrat
ing) his wings, without making actual contact with the female. While
wing fanning takes place, the male will position his antennae forward
and will start following the female. Once the male is in close enough
proximity, he will make physical contact with the female, initially
only with his antennae. He will then attempt to mount the female
and place his antennae parallel with those of the female. The male
will then ‘paddle’ the club-shaped part of the female's antennae with
_bo%orm|;mm-u;l:r|bZ;l-t%bitOv;tt;mftkut7;u
ovipositor to expose her genital aperture. The male then ceases wing
fanning and paddling, moves backwards and spreads his wings be-

omtam1Pv;0;to% Q: otflmo|_Homo%0o t1olr;|b|bomfore copulating with the female, which typically requires more than

between L. heterotomaconspecific males for mating opportunities,

one attempt. Once the male dismounts, both male and female will
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start preening different body parts, while the female will again con-
ceal her genitalia. The male may attempt a new courtship sequence,
but a female will generally not mate more than once, at least not in
| _; t-0ou-|ou< P"-m 7;m).vv;I|7 1969
If a L.heterotomamale is unsuccessful in copulating with a female
despite several attempts, the male will dismount while the female
continues to show typical behaviors observed during copulation
P-Ov;mol=slo™;1;m|8-m7;m vv;|7969). Such unfertilized
females will conceal their genital area after the typical duration of
a successful copulation and will not copulate again; hence behav
iorally these females respond as if copulation was successful, also
called “pseudo-virgins” (Godfray, 1994). Placing males and females
together is thus no guarantee that a female will have successfully
mated, although it is not clear how frequently courtship is unsuc-
cessful for males. Unmated females will have suffered at least some
of the costs associated with mating (e.g., the cost of being courted, a
reduction in time she can dedicate to finding and parasitizing hosts)
without having the benefits (to produce female offspring). The ques-
tion is how common pseudo-virgins are in the field and whether
these females will mate again. Mated females will generally only be
come receptive again after several weeks in the laboratory (van den
v v ;1 T969), and sex allocation patterns suggest that sperm may be

7;rt;|; uS7-«%|;b-|bmjvomtk-t;v-u;ruo7t1P7_-0Oo0u-

et al., 1979). Under optimal conditions in the field (e.g., sufficient
host availability), multiple mating may thus not be necessary when
actual mating has occurred.

Comparing the same Lheterotoma v|u-bri-m7;mvv;| F969)
%ob|-mo|_wju-BEmo|_;&" 7(;;uh-1r882)showed that the
latter differed considerably in the timing of mating- related behav-
iors, offspring numbers, and sex allocation patterns. This would sug
gest that mating-related behaviors may depend largely on the local
environment, leading to local adaptation and population differentia-
tion. Ridley (1993) suggested that solitary hymenopteran species are
primarily monandrous (females mate once), while gregarious species
are mainly polyandrous (females mate multiple times). Considering
the strong effects of local environmental conditions, different pat -
terns of dispersal observed between populations (described above),
and a quasigregarious host distribution, we could expect at least
some multiple mating to occur when siblings are competing at the
natal patch. This remains strictly hypothetical for L. heterotoma but
for other monandrous species, such as Nasonia vitripennj&phelinus
asychis Trichogramma evanescensP o ft|on -t: 2015, 2019;

-lb;mv. ob 20068 -100 ob”R260B; Ridley,1988; Wang
et al., 2021), multiple mating is occasionally observed in the field. It
would be very interesting to compare mating-related traits between
distinct, natural wasp populations, a task for which L.heterotomais
particularly well suited.

Wolbachia pipientis. Wolbachias inherited maternally (i.e., vertical
transmission), but it can occasionally also be acquired horizontally
from a conspecific (Frost et al., 2014 Q@ u-mo|_wr;1b® _I;7
et al., 2016). The density and location of Wolbachiainside L.hetero-
toma is sexdependent: females harbor a greater number of bacteria
per cell compared to males, and in females Wolbachig mainly located
in the abdomen compared to the head and thorax in males (Mouton
et al., 2003). L. heterotoma can harbor three different Wolbachia
strains, wLhetl, wLhet2 and wLhet3 and these strains all belong to
the Wolbachia 1t-7P (-"u;| -t:IB99, 2000; Werren et al., 1995;
Zhou et al., 1998). Infection with the three distinct wLhet strains ap-
pears to predominate in nature, although double-, mono- and non-
infected individuals have also been recorded in natural populations
(Mouton, 2004). In contrast to A. tabida that requires Wolbachia for
oogenesis (Mouton et al., 2009), none of the three strains is obliga-
tory for L. heterotoma P (-"u;| -t:2000). However, wLhetl does
seem to be required for persistence of the other strains, because
mono-infection with wLhet2 or wLhet3 could not be established in the
laboratory (Mouton et al., 2003). The density of each Wolbachiastrain
remains constant regardless of the presence of other strains, suggest-
ing an absence of competition between strains (Mouton et al., 2003).
The relative proportion of the three strains does not vary depend-
ing on temperature or host genotype: wLhet3 is always the most
abundant, while wLhet2 is the least abundant (Mouton et al., 2003,
2007). Temperature and host genotype do, however, affect the total
Wolbachiaload (Mouton et al., 2007).

Wolbachia can have various effects on host fitness, including
cytoplasmic incompatibility: a reproductive incompatibility resulting
in embryonic death (Shropshire et al.,2020). In diploids, where all
eggs are fertilized, a complete cytoplasmic incompatibility leads to
loss of all progeny. In haplodiploids, two types of cytoplasmic in
compatibility have been described: “Female Mortality” and “Male
Development” (Figure 6). For Female Mortality cytoplasmic in
compatibility, fertilized eggs cannot develop; hence only males are
produced from unfertilized eggs (Figure 6). For Male Development
cytoplasmic incompatibility, fertilized eggs lose the paternal chro-
mosome and develop into haploid males. While the genes underly
ing cytoplasmic incompatibility have been discovered, the molecular
mechanisms and differences between the two incompatibility types
have not yet been elucidated (Shropshire et al., 2020. In general,
the incompatibility type and number of offspring resulting from an
incompatible cross depends on several factors, such as host spe
cies, host genotype, as well as Wolbachiatrain and Wolbachiaload
P ou7;my;l;bt@D03; Raychoudhury & Werren, 2012). In L. het
erotoma, cytoplasmic incompatibility induced by the three strains
(wLhetl/wLhet2/wLhet3 |-t; Sx SWolbaetieze female) resulted in
- ;1-t; ou|-tb]«r;bmlolr-|bO0OPmtH|k; -t:2000, 2001).
Curiously, crosses between Lheterotomaindividuals containing only
one or two Wolbachia strains revealed different types of cytoplasmic

*:’J | JWolbachia -m7 1«<|ort-vib1l bm2lolr-|b@dempalikility, intermediate between Female Mortality and Male

Factors unrelated to mating structure can also have alarge effect on sex
allocation patterns, including the intracellular alpha-proteobacterium

Development incompatibility, where part of the offspring died, while

some developed as haploid males. The percentage of haplodized

eggs decreased with the number of strains involved from ~41% to
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cytoplasmic incompatibility induced
by Wolbachiain haplodiploid insects:
the Male Development type described
in Nasonia vitripennis P u;; T %o;u _
Werren, 1990) and the Female Mortality
type described in Leptopilina heterotoma
P(-"u; ;| -t:72Z000. f: Wolbachia
free, w: infected with Wolbachia (WNvitA
and wNvitB for N. vitripennis wLhetl,
wLhet2 and wLhet3for L. heterotomg).
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~18% (Mouton et al., 2005). This clearly indicates that cytoplas
mic incompatibility is dependent on the number of strains and/or
Wolbachiadensity in L. heterotoma The three wLhetstrains are fur
ther bidirectionally incompatible, meaning that any cross between
individuals bearing different strains would result in embryonic death
(Mouton et al., 2005).

In addition to the clear negative fithess consequences of cy
toplasmic incompatibility, Wolbachia can further reduce L. hetero-
toma fitness by reducing locomotor performance, survival under
v|i-u"-|bem7]] ruo7tl|®Pomtu(«7u;7| -t:2000). This
has, however, only been tested with triply infected individuals;
hence the effects of each strain on fitness are not known (Fleury,
(-"u; 7| -t:2000). The eggs ofWolbachiacured females showed
a lower encapsulation rate by D. simulanslarvae, revealing that
immunity-related traits are also likely affected (Fytrou et al., 2006;
see Section2 on host immunity). No effect was found of Wolbachia
bm=;1|brobul-7b-m_bu7;";torl;m|bl;P t;tue7u;7
et al., 2000). When both parents were triply infected, sex ratios re-
mained unchanged, indicating that Wolbachiais not feminizing nor
male-killing in L. heterotoma P t; T u<«7u; 7| -t:2000). So far, no
positive fitness effects of Wolbachia have been found for L. hetero-
toma P t;Tue7u;7| -t:2000). Considering its strong negative
effects on fitness and its high prevalence in natural populations,
Wolbachiais particularly deleterious for L. heterotoma

$&!I" L. HETEROTOMA

The incredible knowledge-base on the amber waspL. heterotomade-
scribed largely in this review highlights the major contribution that
this model system has made to research in ecology and evolution.
L. heterotoma phenotypes often lie in between the most extreme
life history syndromes. For example, development occurs as an

Male Development Cl type
Nasonia vitripennis

o R

haploid egg haploid egg

3f R

Ecology and Evolution JM|[Je— 0= ‘-
=t e WILEY

Female Mortality Cl type
Leptopilina heterotoma

o R

@ f )i dwi
|

< M

diploid egg

o i
haploid egg

endo- and ectoparasitoid, fat accumulation is plastic and dependent
on the host environment, there seems to be partial local mate com

petition, and cytoplasmic incompatibility involves both types (Male

Development and Female Mortality). This makes L.heterotoma an
excellent system for comparative studies.

Previous work on L. heterotoma further paves the way for the
development of novel research in different fields. For example,
L. heterotomawould be an excellent system to determine the cost of
learning and the trade-offs between learning ability and life histo-
ries in changing environments. We further know very little about the
species' basic population dynamics (e.g., rate of increase, density-
dependence), knowledge that could be of use for linking individual-
level and population-level processes. There is still a major gap of
knowledge on mate choice decisions and sexual selection in L. het
erotoma, which could play an important role in population differen -
tiation and speciation. Indeed, aside from the work on local mate
competition, we still know relatively little about genetic differenti -
ation between populations, including dispersal distance, migration,
and gene flow. Sequencing neutral markers revealed large gene flow
and minor sequence differences between L.heterotomapopulations
P (bvy|ut:ZD18), but phenotypically we see major intra-specific
differences in diverse traits, such as mating behaviors, egg numbers,
and fat accumulation phenotypes.

Recently, a high quality and annotated genome sequence of Lhet-
erotoma became available (Di Giovanni et al., 2020; Huang et al., 2021,
Wey et al., 2020). The genome was originally sequenced to study the
eVolution of virus- like particles, and genomic tools have indeed mostly
been used in studies on virulence and immunity (Wertheim, 2022).

;m;|bjlootvT1-v];m;PFul;|; Amo Tl m
P! bQn7! " 1J-v—_-";0;;m %bTyvt<fol_-u-1];JpbaE;
=tml|bdmym-u-vb|db7Zwvtsm;]||;:]|-t2020;Lietal., 2012,
2017; Lynch, 2006; Werren, 2009 Q: vT11;vvi=it|;|_07% -v
already developed for L. boulardiO<bmf;1|bw] 7bu; 1l [7ob v-
sected late larval instars (Colinet et al., 2014). Using a similar method,

bm|;u=;u;m1l
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a recent study with L. heterotoma -tve _0%o0; 7b]!
(Huang et al., 2021). This provides an exciting prospect for future stud
ies on gene function in L. heterotoma.
mo|_;uvv;|bvL. heterotoma's close association with
Drosophila species, where D. melanogaster is itself an important
model in genetics, developmental biology and genomics (Gompel &
Carroll, 2003; Kuntz & Eisen, 2014, Prud’homme & Gompel, 2010;
Ugur et al., 2016). There are thus a plethora of resources avail
able for the host, e.g., mutants, the DrosophilaGenetic Reference
Panel (Mackay et al., 2012), and the more recent literature has in
creased focus also onDrosophilaecology (O'Grady & DeSalle2018).
ov|_ov|RP ol0Obm!;;7R2016; Klepsatel et al., 2018 2020;
Krams et al.,2020; Wertheim et al., 2006) and parasitoids (Fleury
et al., 2004, 2009; Mazzetto et al., 2016) are further easily observed
and caught in the field, as well as reared in the lab (i.e., using artificial

I;7b-V_od{m;u-|bditv7blo==vrubm;uvQol];|_;u?

this makes the L.heterotomaDrosophilasystem an excellent eco-
evolutionary model system for studying host-parasitoid dynamics
and interactions, also in natural populations.
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