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Abstract 

Automatic acoustic monitoring of bird populations and their diversity is in demand for 

conservation planning. This requirement and recent advances in deep learning have 

inspired sophisticated species recognizers. However, there are still open challenges in 

creating reliable monitoring systems of natural habitats. One of many open questions is 

whether predominantly used audio features like mel-filterbanks are appropriate for such 

analysis since their design follows human’s perception of the sound, making them 

susceptible to discarding fine details from other animals’ vocalization. Although research 

shows that different audio features work better for particular tasks and datasets, it is hard to 

attribute all advantages to input features since the experimental setups vary. A general 

solution is to design a learnable audio frontend to extract task-relevant features from raw 

waveform since it contains all the information in other audio features. The current paper 

thoroughly analyzes the role of such frontends in bird species recognition, which helped to 

evaluate the adequacy of traditional time-frequency representations (static frontends) in 

capturing the relevant information from bird vocalization. In particular, this work shows 

that the main performance gain in learnable audio frontends comes from the normalization 

and compression operations rather than the data-driven frequency selectivity and 

functional form of filters. We observed no significant discrepancy between the frequency 

bands of the learned and static frontends for bird vocalization. Although the performance 

of learnable frontends was much higher, we will show that adequate normalization and 

compression enhance the accuracy of traditional frontends by more than 16% to achieve 

comparable results for bird species recognition. Ablation studies of the frontends under 

different configurations and detailed analysis of noise robustness provide evidence for the 

conclusions, validate the use of mel-filterbanks and similar features in prior works, and 

provide guidelines for designing future species recognizers. The code is available at 

https://github.com/houtan-ghaffari/bird-frontends. 

 

Keywords— Bioacoustics; Audio frontend; Bird sound recognition; Deep learning 
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1 Introduction 

The loss of biodiversity will disrupt vital ecosystem processes and services, such as pollination, 

seed dispersal, and natural pest control, which lead to undesirable ecological and societal 

consequences [1]. Frankly, it is concerning how much anthropogenic activities, such as changing 

land use patterns and climate change, have negatively impacted the diversity of life due to habitat 

loss and have reduced the environmental capacity for sustaining other lifeforms [2], [3]. 

Consequently, trustworthy and continual surveys of the wild populations’ density are crucial for 

conservation planning and future ecological studies [4]. Fortunately, a large subset of animals are 

identifiable by their unique sounds. This property led to the development of bioacoustics and 

ecoacoustics as non-invasive and scalable means to monitor environmental activities via sound 

[5], [6]. In particular, birds are highly active vocal animals, and their populations and diversity are 

noticeable indicators of ecosystem health [7]. Thus, they can provide valuable information for 

conservation planning [8], [9]. 

Although it is onerous to expand habitat and population monitoring systems by deploying 

human experts, there are large volumes of bird sound recordings across the globe due to automatic 

field recorders and public science projects [10]–[12]. Consequently, the main challenge has shifted 

from data gathering to developing reliable and automated analysis tools since it is infeasible to 

manually and continually process these massive and noisy datasets [13], [14]. In the following, the 

terms audio representation and feature are interchangeable when talking about neural networks. 

Feature engineering and designing an appropriate classifier used to be separate problems. 

Bioacoustics researchers have put tremendous effort into creating reliable species classifiers by 

designing proper acoustic features and combining them with various machine learning models. 

Although this is far from being representative of the background works, the traditional models 

include template matching [15]–[17], hidden Markov models [18], [19], support vector machines 

[20], and random forests [21], each being leveraged with different hand-crafted features across the 

literature. It made it difficult to compare the models since experimental setups differed in many 

aspects, including the feature design and datasets. Regardless, the field is moving fast, and many 

traditional methods are outdated compared to current tools for analyzing massive datasets. They 

are not flexible enough to address current open challenges unless used purposefully on a narrow 

task. 
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Recent years have seen impressive progress in bird species recognition and related tasks 

[8], [14]. It was foreseeable that deep learning would emerge as the most successful method for 

large-scale bioacoustics analysis [8], [9], [14], [22]–[24]. The main advantage of neural networks 

is to avoid many brittle and difficult choices in designing manual features for the underlying task. 

For example, Xie et al. [25] compared three types of features for bird species classification 

consisting of hand-crafted acoustic features, including features from Mel Frequency Cepstral 

Coefficient (MFCC), visual features extracted from the Constant-Q Transform (CQT) 

time-frequency representation, and training a convolutional network directly on the CQT. They 

also tested the fusion of classifiers trained on these features and found a slight performance 

improvement. However, training a neural network directly on the CQT was, by far, the best choice 

among the features. The other successful contemporary works have explored various types of 

neural networks as species recognizers by leveraging Short-Time Fourier-Transform (henceforth 

STFT or spectrogram) [22] and its relatives, such as mel-filterbanks applied on STFT (henceforth 

mel-spectrogram) [26] and MFCC [24] as input feature. 

Nevertheless, there is still no solid guideline on how to develop neural networks for 

non-human animal sounds. In particular, it is ambiguous what type of audio feature works best as 

the input for bird’s sound modeling since none outperforms others consistently [14]. Also, many 

incorporated time-frequency representations are designed based on human psychoacoustics 

instead of the target animals (e.g., mel-filterbanks and MFCC) [27], [28]. This could be 

problematic since there are substantial variations in the frequency content of different species’ 

vocalization. Thus, these traditional features might miss important fine details in other animals, 

especially in high frequencies [14], [28]–[30]. Although many of these features give satisfactory 

results when combined with a deep neural network, one should also focus on the interpretability 

and robustness of the methods to validate their soundness and improve their generalization across 

the datasets and species. In this paper, we evaluate the adequacy of the traditional time-frequency 

representations in capturing the relevant information from bird vocalization. 

It seems to require an exhaustive knowledge of each species’ frequency niche to create 

optimal individualized features. Yet, the most celebrated capability of deep neural networks is 

automatic and task(s)-relevant feature extraction while doing the classification task(s) jointly, 

which has led to unprecedented achievements [31]. Hence, one could ask whether to consider a 

time-frequency representation or the waveform as raw input to neural networks to capture all the 
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relevant information from bird vocalization. Although the former is the prevalent approach, data 

processing inequality indicates that post-processing can not increase a signal’s information [32]. 

Therefore, the waveform is a promising alternative to traditional features derived from it when 

leveraging neural networks. This union of neural networks and waveform provides a flexible 

family of models capable of self-adjusting to the characteristics of the target species. In particular, 

it is an attractive paradigm when targeting many species without adequate prior knowledge about 

their frequency niches. 

Nonetheless, the accuracy of models trained on the waveform is usually lower or 

comparable to the time-frequency features [33]. Regarding the resources, using waveform is 

considerably costlier during the training and slower for inference. A successful method requires 

expertise in signal processing and careful architecture design, usually through specialized modules 

with physically informed and constrained feature extractors, known today as audio frontends 

[33]–[38]. An audio frontend can be plugged into any neural network classifier to extract features 

from waveforms. We do not attempt to survey the audio frontend literature here. Hence, we 

explain a few relevant works to provide a general insight into the line of progress. 

Sainath et al. [34] was an early work to show that waveform can match the 

log-mel-spectrogram in performance on speech processing, where the authors used a 1d 

convolution layer as the frontend and initialized its parameters (a.k.a kernels) by Gammatone 

filters [39]. Similarly, Zeghidour et al. [35] proposed the learnable time-domain filterbanks where 

the convolution kernels were initialized by Gabor filters [40]. However, they also used learnable 

pooling and pre-emphasis layers. Some works suggested going beyond informed initialization by 

constraining the convolution kernels to be physically interpretable. In particular, Ravanelli and 

Bengio [36] showed that using learnable band-pass sinc filters as the convolution layer kernels 

benefits speech processing tasks; their frontend is known as SincNet. Please notice that the 

difference with previously mentioned works was that SincNet kernels had only two learnable 

parameters to learn the band-pass sinc filters and were not imitating them only at initialization. 

Later, Noé et al. [37] modified the SincNet using Gabor filters for their optimal trade-off between 

time and frequency resolution [40]. Recently, Zeghidour et al. [38] proposed a fully-learnable 

frontend called LEAF. It also leverages Gabor filters and the best practices from prior works. 

LEAF was not limited to speech processing and showed comparable or better results across 

diverse audio processing tasks and datasets. 
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At the time of writing and to our knowledge, the literature on the topic is relatively sparse 

in bioacoustics. There is a bird species recognition task among the experiments of [33] and [38]. 

However, they lack sufficient detail for bioacoustics analysis. Bravo Sanchez et al. [30] have tried 

the original SincNet [36] for bioacoustics with limited investigation. Therefore, we provide an 

exhaustive analysis of modern audio frontends to examine their efficacy compared to traditional 

time-frequency features for bird species recognition. The ablation study will demystify some 

questions around these models and eventually lead to practical findings that others can adapt in 

their statistical modeling. In particular, a series of detailed experiments will show that, 

i. the bulk of the improvement in the audio frontend comes from normalization operations 

rather than data-driven frequency selectivity, 

ii. normalization makes the conventional features comparable to learnable frontends, 

iii. compression and normalization together make the models robust against unseen noise, 

iv. the learnable frontend prefers log-linearly spaced frequency bands for bird vocalization, 

although it is reluctant to change if initialized by either mel-filterbanks or linearly spaced 

STFT, 

v. the functional form of the frontend filters only has noticeable significance in the absence of 

normalization and smoothing modules. 

The paper is structured as follows: section 2 will provide information about the datasets, 

experiments, and background materials for understanding the audio frontends. Section 3 is about 

conducting the experiments and reporting the results. Section 4 discusses the results further and 

provides practical guidelines. The conclusion is in section 5. 

 

2 Methodology 

2.1 Data Acquisition 

The recordings of ten prevalent bird species in four neighboring countries of Western Europe 

(Belgium, The Netherlands, France, and Germany) were downloaded from the Xeno-Canto public 

repository [12]. The prevalent species are Cettia Cetti (Cetti’s Warbler), Erithacus Rubecula 

(European Robin), Fringilla Coelebs (Common Chaffinch), Luscinia Megarhynchos (Common 

Nightingale), Parus Major (Great Tit), Phylloscopus Collybita (Common Chiffchaff), Sylvia 

Atricapilla (Eurasian Blackcap), Troglodytes Troglodytes (Eurasian Wren), Turdus Merula 

(Common Blackbird), and Turdus Philomelos (Song Thrush). 
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These recordings were filtered using the accompanying metadata to keep the high-quality 

ones (quality ’A’ and ’B’). This dataset was split into 70-10-20% train-validation-test sets while 

stratifying by species labels to preserve the distribution of classes in each set. The recordings 

longer than five minutes were removed from the test set. As explained in the following section, 

only the first five seconds of the validation set recordings were used. Table 1 shows the number of 

recordings and their duration. The project repository provides details of the dataset preparation. 

 

Table 1: Number of the recording files and their total duration in hours (h). 

Species train files (duration) validation files (duration) test files (duration) 

Cettia Cetti 306 (2.51 h) 43 (0.06 h) 87 (0.46 h) 

Erithacus Rubecula 1032 (21.69 h) 147 (0.20 h) 249 (5.14 h) 

Fringilla Coelebs 861 (15.97 h) 122 (0.17 h) 222 (3.90 h) 

Luscinia Megarhynchos 553 (18.98 h) 79 (0.11 h) 144 (3.55 h) 

Parus Major 1158 (18.23 h) 165 (0.23 h) 315 (5.08 h) 

Phylloscopus Collybita 997 (13.00 h) 142 (0.20 h) 274 (5.26 h) 

Sylvia Atricapilla 995 (26.13 h) 142 (0.20 h) 279 (5.83 h) 

Troglodytes Troglodytes 677 (13.73 h) 96 (0.13 h) 185 (3.14 h) 

Turdus Merula 1193 (47.58 h) 170 (0.23 h) 298 (7.73 h) 

Turdus Philomelos 797 (29.74 h) 113 (0.14 h) 154 (4.53 h) 

Total 8569 (207.56 h) 1219 (1.67 h) 2207 (44.62 h) 

2.2 Cropping Strategy for Long Recordings 

Xeno-Canto only offers single-class and weakly labeled recordings. It means the accompanying 

metadata of each recording indicates the presence of one foreground species vocalization 

(single-class) without providing any temporal information about when it happened (weakly 

labeled). The weak labels are problematic since the target vocalization may occupy a small portion 

of its recording. Also, the vocalization and recording vary in duration drastically per example. The 

single-class label brings difficulty since the recording may contain potentially overlapping and 

unannotated geophony, biophony, and anthropophony sound events. These unannotated events 

may be present or absent from the closed set of the target classes (ten bird species in our case). All 

of these can reduce the model’s quality. Thus, this work relies on the best practices to use this 

dataset. 
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A good evaluation strategy without temporal information is to use the whole recording. It 

requires windowing the lengthy recordings due to limited machine memory. Hence, each test 

recording was split into five-second chunks with one second of overlap. Then, the model predicted 

all five-second excerpts and averaged their outputs to indicate the recording-level decision. 

Although suitable for the one-time run on the test set, this strategy is computationally too 

expensive. Thus, two different cropping methods were used for the training and validation 

recordings to facilitate the speed of experimentation. 

Cropping without temporal information will inevitably result in some incorrect 

input-output pairs. However, the labeled species of the high-quality recordings from Xeno-Canto 

generally are the dominant sound event of their recordings. The early experiments showed that 

random cropping outperforms selecting a fixed-position window from the beginning of 

recordings, probably due to creating a more diverse training set with enough fidelity. Therefore, a 

two-second excerpt was randomly extracted from each training recording per epoch. 

The above randomness is undesired for the evaluation. Thus, the first five seconds of the 

validation recordings were used to monitor the models during training. It works since the labeled 

species are usually present during the first few seconds of the recordings from Xeno-Canto. The 

preliminary experiments confirmed that this strategy significantly reduces the computation time 

while producing valid results compared to the full-length evaluation used for the test set. 

 

2.3 Data Normalization 

A common practice in data analysis is normalizing the input to a suitable and expected numerical 

range. Input normalization is rarely discussed in adequate detail since it is assumed to have an 

insignificant impact on the final model. However, this work shows that normalization is the main 

factor in closing the gap between static and learnable audio frontends. The experiments leveraged 

two mainstream normalization schemes, including min-max normalization, 

 = min

max min

x x
x

x x




 (1) 

and standardization, 

 =
x x

x
s


 (2) 

where x  and s  are the empirical mean and standard deviation, respectively. The normalization 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

was applied per data point (not batch) to the frontend’s output before feeding it to the classifier. 

 

2.4 Data Augmentation 

Data augmentation refers to any label (semantic) preserving data transformation. Such techniques 

have proven valuable in enhancing the generalization capability of neural networks as they 

artificially enrich the dataset size and diversity. Similar to the normalization scheme, it contributes 

to inconsistencies among the published results. This work uses four popular data augmentation for 

the audio waveform, including changing audio speed, pitch shift, amplitude scaling (a.k.a gain 

modulation), and adding Gaussian noise. The ablation study examines the models in the presence 

and absence of data augmentation. The project repository provides additional implementation 

details. 

 

Figure 1: The high-level schematic of the audio frontends computation blocks, where the red boxes 

are learnable and the gray ones are static. 

 

2.5 Audio Frontends 

This work considers two learnable audio frontends, LEAF [38] and SincNet [36], and two static 

(non-learnable) ones, spectrogram and mel-spectrogram. For brevity, (mel-)spectrogram refers to 

both spectrogram and mel-spectrogram. This section explains the original form of the frontends. 

However, the ablation study modifies them with learnable and static components for deeper 

examination. Although many learnable audio frontends have been proposed, we found LEAF and 

SincNet the most widely adopted ones that do what we require here. Moreover, the literature 

shows that these two learnable frontends adequately represent what such models are capable of 

since they are the accumulation of the prior works’ successful modifications. 

The (mel-)spectrogram combined with log compression results in a static audio frontend. 

At a high level, a learnable frontend has similar components with additional flexibility to adapt to 

the dataset’s characteristics. The usual design has a convolution layer with specialized kernels to 

capture distinct frequency contents, an activation function, a pooling to downsample, and a 

compression layer, as depicted in Figure 1. 

LEAF increased the flexibility of the frontend by making the pooling and compression 

layers learnable. It substitutes the commonly used mean or max pooling by low-pass filtering using 
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Gaussian kernels with learnable spreads for each frequency band. The downsampling happens by 

strided convolution during low-pass filtering, where the stride size is equivalent to the hop size in 

STFT. Furthermore, it leverages learnable PCEN [41] for both compression and normalization. 

PCEN [41] is an adaptive method that replaces static functions such as log or root 

compression. It is formulated as, 

 
( , )

( , ) =
( ( , ))

r

rE t f
PCEN t f

M t f 
 

 
  

 
 (3) 

where t  and f  are time and frequency indices, ( , )E t f  is the energy at position ( , )t f ,  is a 

small constant to avoid division by zero, [0,1]  controls the gain normalization strength, and 

  and r  control the dynamic range compression. Furthermore, ( , )M t f  is an exponential 

moving average of ( , )E t f , 

 ( , ) = (1 ) ( 1, ) ( , )M t f s M t f sE t f    (4) 

where (0,1)s  is a smoothing coefficient. In the LEAF implementation [38],  ,  , r , and s  

are learnable parameters for each frequency band. 

LEAF’s authors [38] showed that learnable Gaussian pooling and PCEN improve the 

SincNet [36], which they called SincNet+. Moreover, PCEN is useful for pattern recognition in 

far-field noisy recordings [42], which is a desirable property for many bioacoustics tasks. Hence, 

to make the comparison fair and follow the best practices to our knowledge, this work uses the 

SincNet+. 

The main difference between the LEAF and SincNet+ is the functional form of their filters 

in the convolution layer. LEAF uses the Gabor filter [40], which is produced by multiplying a 

complex sinusoidal wave with a Gaussian window, 

 

2

2(2 ) 2
1

( ) =
2

t

i t

Gabor t e e 




  (5) 

where   is the frequency where the filter yields the greatest response and   is the spread of the 

Gaussian window. Therefore, each filter requires only two learnable parameters for the center 

frequency and spread. 

SincNet+ uses the band-pass sinc filter, 

 ( ) = 2 (2 ) 2 (2 )sinc h h l lt f sinc f t f sinc f t    (6) 
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where 
lf  and 

hf  are learnable parameters determining the lower and higher frequencies of the 

band-pass filter. The sinc function is defined as, 

 
( )

( ) =
sin x

sinc x
x

 (7) 

Finally, to smooth the discontinuities of the sinc filters at the edges, they are multiplied by a 

Hamming window of length L , which is defined as, 

 
2

( ) = 0.54 0.46 ( )
t

w t cos
L


   (8) 

 

2.6 Backend Neural Network 

The complete model combines an audio frontend with a backend neural network classifier. This 

work uses an EfficientNet-B0 [43] from the official implementation of TorchVision [44] to keep 

the experiments consistent with prior works, reproducible, and accessible. Also, the backend 

leveraged the pre-trained weights from image classification since it improves the performance and 

stability of optimization. 

 

2.7 Noise Dataset 

Eight sound events consisting of wind, thunderstorm, rain, cricket, train, engine, helicopter, and 

airplane were picked from the dataset for Environmental Sound Classification (ESC-50) [45] as 

external natural and urban noise recordings. This dataset was only leveraged for adding noise to 

the test set in analyzing the robustness of frontends to unseen noise. The frequency profile of each 

noise class is depicted in Figure 2. 

 

Figure 2: Frequency profile of the sound events in the noise dataset. 

 

3 Experiments and Results 

The recordings were resampled to 32 ksps (kilo samples per second) for efficient computation 

since the bird vocalizations are typically below 16 kHz. The spectrogram was generated by an fft 

size of 512 points (16 ms at 32 ksps) and a hop length of 320 points (10 ms). Dropping the first row 

of the spectrogram (DC component) resulted in 256 frequency bins with a resolution of 62.5 Hz. 

The mel-spectrogram uses the same setup with 80 mel-filterbanks. Accordingly, LEAF and 
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SincNet+ were initialized by 80 filters using the peak frequency and width of the mel-filterbanks 

[36], [38]. For consistency with the original works, each filter of the LEAF and SincNet+ had 801 

points (25 ms). The stride of the convolution in Gaussian pooling was set to 320 points to be 

consistent with the STFT hop length. 

 

Table 2: Test results (in %) of the frontends. The codes ’A’, ’S’, and ’M’ indicate data 

augmentation, standardization, and min-max normalization, respectively. Sinc refers to SincNet+. 

Model accuracy top-3 accuracy f1-score precision recall 

Mel-log-A 76.44 89.62 77.06 83.64 76.69 

Mel-log 77.84 88.94 77.21 83.65 76.28 

Mel-pcen-S 91.80 98.01 91.75 92.39 91.35 

Mel-log-M 92.25 96.96 91.77 92.67 91.32 

Mel-log-S 92.34 97.69 92.03 92.68 91.68 

Mel-log-M-A 92.48 97.37 92.05 93.29 91.32 

Mel-log-S-A 92.43 97.55 92.18 93.30 91.50 

Mel-pcen 92.52 98.19 92.29 92.53 92.19 

Mel-pcen-M 92.57 98.23 92.36 92.96 92.12 

Mel-pcen-S-A 92.84 98.32 92.76 93.28 92.43 

Mel-pcen-A 92.80 98.19 92.89 93.76 92.32 

Mel-pcen-M-A 93.79 98.28 93.62 94.06 93.38 

Stft-log-A 76.39 87.27 76.50 82.51 75.71 

Stft-log 77.53 89.44 76.64 79.64 76.17 

Stft-log-S 89.85 96.01 89.18 89.51 89.43 

Stft-pcen 90.30 97.24 90.73 92.01 90.08 

Stft-log-M-A 91.93 97.24 91.39 92.61 90.65 

Stft-log-M 92.34 97.37 91.82 92.59 91.39 

Stft-pcen-M 92.21 97.92 92.13 92.57 91.95 

Stft-log-S-A 92.57 97.01 92.28 93.12 91.74 

Stft-pcen-S 92.89 97.92 92.87 93.46 92.57 

Stft-pcen-A 93.34 98.10 93.25 93.80 92.95 
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Stft-pcen-M-A 93.48 98.23 93.37 94.23 92.77 

Stft-pcen-S-A 93.84 98.46 93.46 94.32 92.88 

Sinc-log-A 90.26 97.37 90.38 91.36 89.93 

Sinc-log 90.80 97.24 90.70 91.41 90.50 

Sinc-log-M 90.85 97.33 90.73 91.71 90.16 

Sinc-pcen 91.44 97.69 91.36 91.82 91.22 

Sinc-log-S-A 91.93 97.78 91.85 92.69 91.23 

Sinc-log-M-A 92.07 97.73 92.07 92.73 91.71 

Sinc-pcen-M 92.12 98.28 92.29 93.21 91.69 

Sinc-log-S 92.80 98.23 92.51 93.60 91.76 

Sinc-pcen-S-A 92.75 98.10 92.51 93.19 92.07 

Sinc-pcen-A 93.61 98.64 93.63 93.97 93.40 

Sinc-pcen-S 93.79 98.69 93.70 93.85 93.62 

Sinc-pcen-M-A 94.47 98.82 94.57 94.81 94.39 

Leaf-log-M 92.71 97.64 92.39 93.25 91.83 

Leaf-pcen-S 92.84 98.23 92.63 93.45 92.06 

Leaf-log 93.11 98.23 92.73 93.48 92.31 

Leaf-pcen 93.20 98.01 92.86 93.60 92.37 

Leaf-log-S 93.20 98.37 92.93 93.58 92.53 

Leaf-pcen-M 93.66 98.60 93.36 93.89 93.04 

Leaf-pcen-S-A 93.66 98.32 93.37 94.12 92.89 

Leaf-log-A 93.75 98.46 93.66 94.27 93.24 

Leaf-pcen-A 94.20 98.32 93.70 94.60 93.17 

Leaf-log-S-A 94.11 98.28 93.81 94.07 93.63 

Leaf-log-M-A 94.11 98.37 93.99 94.70 93.47 

Leaf-pcen-M-A 94.20 98.41 94.11 94.71 93.67 

Including the initial general setup, 12 distinct models were trained for each frontend by 

varying the normalization, compression, and data augmentation schemes. It resulted in a total of 48 

models that will be assessed shortly to gain further insight into the machinery of audio frontends. 

The models were trained for 100 epochs using Adam optimizer [46] with the default 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

hyper-parameters and a cosine decay scheduler for the learning rate. The loss function was 

cross-entropy for multi-class single-label classification. The macro-averaged f1-score on the 

validation set aided in monitoring the model convergence. Macro averaging gives equal 

importance to all classes regardless of the number of data points in each one. 

The experiments were conducted on a server with 64 Intel Xeon Gold 6226R CPUs, 192 

GiB RAM, and one NVIDIA RTX A-6000 GPU with 48 GiB RAM. The training time varied 

based on the experiment, with the lowest for static frontends being around 1.5  hours and for 

LEAF around 5 hours. SincNet+ is slightly faster than LEAF since the latter has complex valued 

filters. The project used the following Python packages: PyTorch [47], TorchAudio [48], 

TorchVision [44], Scikit-learn [49], NumPy [50], Matplotlib [51], Pandas [52], and tqdm [53]. 

 

Figure 3: A summary from Table 2 shows that PCEN, normalization, and data augmentation are 

beneficial overall. For compression, 24 models used PCEN, and 24 used log. There are 16 models 

for each normalization scheme. Also, 24 models used data augmentation and 24 did not. The box 

covers the first to third quartile of the data. The whiskers extend up to 1.5 times this interquartile 

range. Circles are data points beyond the whiskers. 

 

3.1 Main Results 

Table 2 shows the test results. The largest performance gap between the learnable and traditional 

frontends stems from using PCEN instead of log compression. When combined with PCEN, the 

(mel-)spectrogram is on par with the learnable frontends. Noticeably, a proper normalization on 

top of the log compression produced similar results to the PCEN version of the models. It is hard to 

eyeball some of these effects, especially for the data augmentation. Therefore, a performance 

summary for the 48 models is depicted in Figure 3 to comprehend the importance of each 

component. Figure 4 shows the confusion matrices of the base and the best configuration for each 

frontend. 

It is of negligible practicality to pick the best model based on very close numerical values 

and distribute credits. The rankings will slightly change from task to task depending on many 

factors, especially the dataset, fft size, and hop length. The impressive point here is the proximity 

of the results. It shows that all frontends were adequate for bird species recognition if given 

suitable configurations, which followed a logical consistency. The following sections provide a 
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detailed analysis of the frontends with additional experiments to support the conclusions. 

 

Figure 4: Confusion matrices of the base frontends and their best versions in Table 2. The code 

names are: Cettia Cetti (CC), Erithacus Rubecula (ER), Fringilla Coelebs (FC), Luscinia 

Megarhynchos (LM), Parus Major (PM), Phylloscopus Collybita (PC), Sylvia Atricapilla (SA), 

Troglodytes Troglodytes (TT), Turdus Merula (TM), and Turdus Philomelos (TP). 

 

Figure 5: Filters have remained close to their initialization based on mel-filterbanks. 

 

3.2 Ablation studies for Analyzing Audio Frontends 

A learnable audio frontend should automatically adjust the frequency response of its filters to 

match the characteristics of a given dataset. However, Figure 5 shows that SincNet+ and LEAF 

remained close to their initial state after the training. It explains the proximity of the results in 

Table 2 since all frontends extracted similar features, as depicted in Figure 6. 

The number of filters might be lower than required and the reason for their stickiness 

(Figure 5). If true, Table 2 shows that the learnable frontends could do better on this dataset and 

task using more filters. In contrast, it might be that the (mel-)spectrogram is close to what learnable 

frontends desire for this scenario. Then, the same results show that traditional frontends are 

performing as well as the learnable ones. Therefore, the model would not need to alter a 

well-initialized frontend to reduce the classification error. Section 3.2.1 examines these two 

hypotheses. 

Modifying the filter’s functional form has been the primary source of novelty and 

improvement in the audio frontend literature. Yet, the results show a negligible gap between LEAF 

(Gabor filters) and SincNet+ (band-pass sinc filters). The extent of such claims has been 

questioned on conventional audio tasks and datasets [33]. Therefore, section 3.2.2 will probe the 

effect of the filter’s functional form in the context of bird species recognition. It contributes to 

comprehending the utility of these models for future work in bioacoustics. 

 

Figure 6: Feature representation of frontends on a recording from European Robin, shown on top 

(photograph credit: 

https://en.wikipedia.org/wiki/File:Erithacus_rubecula_with_cocke
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d_head.jpg). The features are similar, which explains the proximity of their performance in 

Table 2. No postprocessing was applied for visual purposes. 

 

Table 3: Test results for LEAF-L and LEAF-B. See section 3.2.1 for details. 

Model accuracy top-3 accuracy f1-score precision recall 

LEAF-L 93.97 98.55 93.53 94.48 92.82 

LEAF-B 89.17 96.38 88.62 89.12 88.29 

Figure 7: The filters’ frequency response for (a) LEAF-L with 256 filters initialized from STFT, 

and (b) LEAF-B with 80 filters initialized linearly in an inappropriate region. LEAF-B changed 

significantly and formed an almost log-linear spacing after 1 kHz, similar to mel-filterbanks. 

 

3.2.1 Impact of Frequency Resolution and Initialization on the Frontend 

The frequency resolution of LEAF improved by initializing it using 256 linearly spaced filters. It 

imitates STFT from the main experiment to remove the imposed bias towards the log-linear scale. 

Call this larger model LEAF-L. Figure 7a shows that filters preserved their trend despite the 

additional flexibility. Hence, the stickiness was not due to the limited number of filters. 

Another LEAF was initialized by 80 linearly spaced filters in low-frequency bands, which 

is inappropriate for analyzing bird vocalization since birds usually occupy the 1-16 kHz bands 

(mostly under 8 kHz). Call this badly initialized model LEAF-B. Figure 7b shows that the filters 

moved substantially this time and formed a log-linear spacing despite linear initialization. 

Table 3 shows the performance of LEAF-L and LEAF-B, which are close to the results in 

Table 2. LEAF-B could improve, but the training stopped at 100 epochs for consistency across all 

experiments. LEAF-L and LEAF-B together reveal that the closeness of the results is due to the 

adequacy of the (mel-)spectrogram and not the suboptimal choice of the hyper-parameters in 

learnable frontends. Moreover, LEAF-B shows that a learnable frontend prefers log-linearly 

spaced filters like mel-filterbanks. The filters adapted to the frequency characteristics of the 

dataset when initialized inappropriately. Also, the occupied frequency bands were faithful to the 

content of our bird dataset, while the filters could reach 16 kHz. Overall evidence shows that STFT 

and mel-filterbanks put the learnable filters in a locally optimal spot for this dataset and task. 

 

Table 4: Test results for LEAF-P and SincNet-P. See section 3.2.2 for details. 



Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof

Model accuracy top-3 accuracy f1-score precision recall 

LEAF-P 82.78 93.34 82.03 84.73 81.79 

SincNet-P 88.31 96.47 87.41 88.59 86.93 

Figure 8: Summary of test results at decreasing levels of SNR for analyzing the natural noise 

tolerance. The ’*’ indicates the original result from Table 2. Each subfigure resulted from 

grouping the models having the attribute written on top within the 48 models. 

 

3.2.2 Utility of the Filters Functional Form 

Looking at the main result in Table 2, one notices a large gap between the static and the learnable 

frontends when using log compression without normalization. The following experiment will 

examine if the functional form of the filters has contributed to this performance gap. 

Some details require an explanation. First, the learnable frontends had filters of length 801 

(25 ms), but the (mel-)spectrogram used an fft window of length 512 (16 ms). Second, the 

learnable filters convolve with the waveform without stride (hop). The downsampling happens in 

the Gaussian pooling by a convolution with a stride of 320 points (10 ms). This stride is the same 

as the hop length for the (mel-)spectrogram. However, Gaussian pooling has a smoothing effect, 

unlike hopping. Thus, adjusting these details is necessary for a fair examination. 

This experiment used both learnable frontends with 80 filters of length 512 (16 ms) that 

were initialized by mel-filterbanks. Gaussian pooling was removed, and downsampling happened 

in the filtering convolution layer by a stride of 320 (10 ms). Then, the outputs were 

log-compressed without normalization. These plain frontends are called LEAF-P and SincNet-P, 

and Table 4 shows their test results. 

Both models significantly outperformed the (mel-)spectrogram. Although not shown here, 

the filters remained close to initialization. Thus, the previous conclusions about the adequacy of 

the (mel)-spectrogram still hold. However, it shows that the benefit of an audio frontend is not 

confined to the data-driven frequency band selection because models with virtually the same 

frequency bands are performing drastically differently. Therefore, the functional form of the filters 

has a noticeable impact, but other frontends can compensate for it by using additional operations 

like normalization. 

 

Figure 9: Same as Figure 8 but using urban noise sources. 
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3.3 Noise Tolerance 

Large neural networks can handle minor variations in the input caused by different compression 

schemes [34]. Thus, changing the range and scale of the inputs is unlikely to make a noticeable 

difference. Yet, it is readily evident in Table 2 that combining the compression with normalization 

is significantly better regardless of the frontend, whether through PCEN or conventional methods. 

Lostanlen et al. [42] showed that PCEN whitens the data by Gaussianizing the magnitudes 

and decorrelating the frequency bands. Thus, it alleviates stationary background noise. The 

following analyses confirm this result for species recognition from outdoor recordings. 

Furthermore, it shows that other combinations of compression and normalization will also 

suppress noise. 

Testing all 48 models on a noisy test set illustrates this property at various signal-to-noise 

ratios (SNR). The noise dataset is described in section 2.7, and the models did not see this dataset 

during the training. The summary results are shown in Figure 8 for the natural noise and Figure 9 

for the urban noise. PCEN and other combinations of compression with normalization alleviate 

both types of interferences with bird vocalization signals. 

 

4 Discussion 

The current trend in computational bioacoustics is moving toward cutting-edge deep learning 

methods to enhance the analysis toolchains [8], [9], [14], [22]–[24], [28], [30], [54]. However, the 

machine learning field is moving fast [55], which leads to a surge of novel computation-oriented 

works for bioacoustics. This rapid development inevitably causes some contradictory results since 

the datasets, their quality, and experimental setups vary drastically among bioacoustics 

researchers. Also, deep learning models’ stochastic and obscure nature contributes significantly to 

the discrepancy among the results [56]–[58]. Hence, practitioners make many design choices 

based on fuzzy evidence. Furthermore, proposed models and their specific hyper-parameters do 

not always behave as nicely as reported outside their benchmark datasets. 

In this work, we aimed to reduce the ambiguity around one such design choice, selecting 

the proper audio feature to train the neural networks for bird species classification. Prior work 

showed concern about using features like mel-filterbanks and suggested investigating the 

waveform to extract species-specific information [14]. Our experiments showed that the 
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(mel-)spectrogram is apt for capturing the informative patterns in bird vocalization to distinguish 

the common bird species. We demonstrated that many discrepancies in results stem from 

seemingly trivial technical details in data pre-processing and training setup. We now summarize 

our findings to aid future works in bird species recognition. 

No free lunch for the frontends: Audio frontend literature has consistently reported the 

superiority of the proposed methods to traditional time-frequency features [34], [36], [38]. 

However, Schlüter et al. [33] proposed a faster version of LEAF, called EfficientLEAF, and 

showed that neither one outperforms mel-filterbanks consistently. Our work confirmed this in bird 

species recognition with an in-depth analysis of the working mechanism of such frontends. 

Additionally, the exhaustive experiments in section 3.1 showed why and when the results differed 

significantly. The discrepancy was not due to the (mel-)spectrogram missing the relevant 

frequency bands or their resolution since the learnable frontends preferred almost identical 

representation. It was mainly due to the more sophisticated pipeline of normalization, smoothing, 

and compression operations in learnable frontends. Also, the results showed that PCEN and 

normalization methods consistently improve the (mel-)spectrogram to produce comparable results 

to modern frontends. 

We think picking the best model based on very close results is not informative. Although 

the learnable frontends were negligibly better in performance, they were much worse in 

computation time. Also, if we had not used the additional normalization with learnable frontends 

and had omitted this detail while using it as default with the (mel-)spectrogram, we could report 

that the learnable frontends are negligibly inferior. Moreover, we did not experiment with fft and 

hop sizes to keep the number of experiments manageable. These two hyper-parameters 

significantly impact the performance of the (mel-)spectrogram. Although the kernel and hop sizes 

of the learnable frontends were fixed, they had a slight advantage since the spreads of the Gaussian 

pooling filters for downsampling were learnable. 

The main difference between many proposed audio frontends in the literature is the type of 

filter and sometimes the adjustments to compression and normalization operations. Some works 

slightly deviate from this narrative, such as convolutional restricted Boltzmann machine [59] and 

learnable wavelet transform [60]–[62]. However, as far as the task involves extracting joint 

temporal and spectral information from a signal without prior knowledge about the nature of the 

data and the task, the (mel-)spectrogram seems sufficient. One of the exceptions is learning the 
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appropriate frequency bands if the sound events of interest occupy widely spread-out frequency 

bands. However, we did not observe a benefit from this property for bird vocalization in our ten 

chosen species. 

Reporting a large gap between such models requires thorough investigation since the 

extracted features hardly differ in the amount of information they carry for most practical 

purposes. We should look for discrepancies in task-specific data pre-processing that could be 

structurally embedded in a learnable frontend rather than reporting the overall superiority of one 

frontend. For example, a wavelet transform might help a specific task and dataset by discarding the 

noise [62]. However, specialization in a narrow domain should logically come at the cost of less 

generalization. It does not mean one audio frontend is always superior across all datasets and tasks 

unless it solves a flaw shared by other frontends. Also, the result heavily depends on the backend 

classifier and the types of features it prefers due to its inductive biases. Thus, other frontends might 

achieve comparable results by modifying them to compensate for their disadvantages. 

Efficacy of normalization: The remarkable improvement of the (mel-)spectrogram and 

learnable frontends from a simple normalization was partly unexpected since input normalization 

usually results in different parameter values but similar performance. We remind the readers that 

the normalization was applied on the backend’s input, which is the frontend’s output. Maybe a 

comparable accuracy is attainable without normalization but requires an optimal training regime, 

extensive hyper-parameter tuning, and potentially modifying the backend classifier. Therefore, 

input normalization at least made the learning much easier since all models used the same backend 

and optimization setting. Another reason for performance gain is that the PCEN and normalization 

schemes strengthened the models against unseen natural and urban noise (section 3.3). It is a 

desirable property since many bioacoustics tasks use outdoor noisy recordings. 

A peculiar observation was that combining PCEN with other normalization methods 

enhanced the models further (Table 2). Notice that PCEN already has a normalizing effect due to 

adaptive gain control besides its root compression (see section 2.5). However, PCEN is a local 

operator that processes the channels independently and sequentially. In contrast, other methods 

like min-max normalization and standardization use the input’s global statistics. Therefore, we 

think these two types of normalization had distinct and complementary effects. We should note 

that PCEN is a computationally expensive operation. Thus, log compression combined with a 

global normalization might be more suitable depending on the requirements. Also, see [33] for a 
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faster alternative to PCEN that leverages temporal median subtraction and batch normalization. 

Role of the filter’s functional form: The functional form of the filters impacted the 

performance in complicated ways. In Table 2, smoothing by Gaussian pooling was the main 

distinguishing component between the learnable and static frontends that used log compression 

without normalization. Yet, the learnable ones outperformed the (mel-)spectrogram significantly 

despite capturing similar frequency bands (f1-scores: Mel-log 77.21, Stft-log 76.64, Sinc-log 

90.70, and Leaf-log 92.73). Additionally, section 3.2.2 showed that without PCEN, normalization, 

and Gaussian pooling, Gabor and sinc filters still outperform the log-(mel-)spectrogram, although 

their performance declined (f1-scores: SincNet-P 87.41, LEAF-P 82.03). We conjecture that the 

filters have a smoothing effect that results in subtle denoising compared to STFT since the 

performance gap shrank in the presence of explicit normalization and PCEN. Regardless, this 

shows that some inherent properties of the filters can affect the results even when they capture 

similar frequency bands. Meanwhile, we also saw that other frontends can compensate for these by 

additional operations such as PCEN and normalization. 

Another observation from section 3.2.2 was that sinc filters significantly outperformed 

Gabor filters (Table 4) while the prior work showed the opposite [38]. However, the best models of 

each frontend in the main experiments were comparable (Table 2). Hence, what is best depends on 

the particular task, dataset, and interaction of all the frontend components. 

Data augmentation: Although the data augmentation was less effective than anticipated, 

we only augmented the waveform to reduce the backend’s randomness and keep the experiments 

manageable. However, the backend could benefit from time-frequency augmentation techniques 

[63]. Thus, we encourage the practitioners to try both types of data augmentation for potential 

gain. For example, adding Gaussian noise could be more effective if applied on the backend’s 

input since the frontend could reduce it by smoothing. Also, we suggest focusing more on sensible 

transformations that one can readily trust in their general benefits. Showing that a particular audio 

classifier benefits from extreme image data augmentation is suspicious since they do not respect 

the physical meaning of time-frequency representations. For example, birds do not sing flipped or 

rotated, but slight frequency translation might be helpful since aging impacts voice pitch [64]. 

Nanni et al. [65] provide a comprehensive study on audio augmentation techniques for natural 

sounds (cat and bird). It can serve as a guideline for choosing the baseline data augmentation 

methods in practice and for future investigation. 
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Future of audio frontends in bioacoustics: We suggest future frontend works in 

bioacoustics analyze their model’s cons and pros in more detail to show if their superior frontend 

addresses a flaw shared by others while having their best properties. It helps to identify when and 

why such learnable representations are necessary for acceptable results. Furthermore, revealing 

the mutual shortcomings aids future works to create better frontends and tests for their analysis. 

Some interesting investigations for future work are improving denoising [62] and leveraging 

source separation [66] in audio frontends (e.g., analyzing songs from dawn chorus). 

In our humble opinion, making a component learnable because it is merely amenable to 

differentiable parametrization is not always an improvement. It is better to use knowledge-driven 

models instead of data-driven ones if the performance heavily depends on initialization based on 

already known and well-behaved parameters while deteriorating significantly by diverging from 

these initial values. We suggest always providing thorough analysis, even for seemingly trivial 

details, to reduce the epistemic uncertainty for practitioners and future research. 

Clarifying the terminology: Riad et al. [67] proposed a 2d Gabor convolutional frontend 

to capture data-specific temporal and spectral modulations from the mel-spectrogram. They drew 

parallels from the neuroscience of the auditory system and showed that the filters learn meaningful 

parameters and representations. Similarly, Ren et al. [68] proposed an equivalent frontend for 

underwater acoustics using the spectrogram as input. These types of frontends require an already 

computed time-frequency representation. Therefore, it is better to consider them as part of the 

classifier or an intermediate component since they are one step further than the audio frontends 

operating directly on the waveform. 

Notice that our work studies the adequacy of hand-designed and learnable time-frequency 

representations in capturing sufficient information to discern bird species. We do not make any 

claim about what type of model is the best to leverage the time-frequency information for species 

classification. The complete pipeline is beyond the choice of the input features and includes many 

other open challenges. However, it would be interesting to combine the frontends [33], [36], [38] 

and intermediate modules [67], [68] in future work and analyze their combined impact. For 

example, it is impossible to visualize the spectro-temporal development of all bird species songs 

using one time-frequency resolution (syllables might attach due to short spectral and temporal 

gaps). Hence, it seems beneficial to use an audio frontend with limited but learnable frequency 

bands on waveforms with high sampling rates and leverage one intermediate module of 2d Gabor 
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filters in the first convolution layer of the backend to capture the species-specific spectro-temporal 

patterns. 

Choosing the features in practice: The learnable filterbanks are very useful if prior 

knowledge about the dataset implies flexible frequency band selection. However, given the current 

audio frontend technology, the (mel-)spectrogram is almost as suitable as the waveform for bird 

species recognition. Moreover, we showed that frontends learn similar features (sections 3.2 and 

3.2.1). If the development and inference time are of concern, the (mel-)spectrogram is the safest 

default choice unless the potential marginal improvement of a learnable frontend is necessary. We 

suggest using the (mel-)spectrogram and trying a few resolutions to pick the best STFT 

hyper-parameters experimentally (on a validation set). The fft and hop sizes usually impact the 

results significantly and might even remove the little performance gap between the static and 

learnable filterbanks for species classification. We also encourage using PCEN (see [33] for a 

faster alternative) and a global normalization method for bird species recognition. The min-max 

normalization is a good default. 

 

5 Conclusion 

A detailed ablation study of the learnable and static audio frontends showed little benefit from 

data-driven frequency selectivity for bird vocalization. Nonetheless, the functional form of the 

learnable filters impacted the performance despite the homogeneity of frequency channels across 

the frontends. However, adequate normalization and compression operations reduced the 

performance gap between the frontends. In particular, PCEN, min-max normalization, and 

standardization made the models resilient against unseen environmental noise and consistently 

made the (mel-)spectrogram comparable to modern audio frontends. 

An in-depth explanation was provided for each experiment, followed by a thorough 

discussion of all the results to summarize the observations and practical findings. This work 

concludes that the (mel-)spectrogram combined with PCEN and a global normalization method is 

on par with learnable audio frontends that operate on the waveform. The findings may not apply to 

all animals and scenarios but should be valid for typical bird species recognition tasks. 

Audio frontends that use waveforms might significantly increase computation time and 

latency. Therefore, a marginal improvement compared to using the (mel-)spectrogram should be 

necessary for the task to be considered a proper trade-off. Regardless, adapting the time-frequency 
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representation to the dataset’s characteristics and using physically informed filters are intriguing 

ideas for the discussed reasons. The topic deserves further research to build efficient learnable 

frontends for bioacoustics and identify the circumstances where they are most appropriate. 
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Highlights 

 Learnable audio frontends impact species classifiers significantly. 

 Learnable filters are log-linearly spaced for bird vocalization like mel-filterbank. 

 PCEN and normalization make mel-spectrogram and learnable filters comparable. 

 Compression and normalization make the models robust against environmental noise. 

 Filter parametric form is significant without normalization and smoothing modules. 
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